CAGEN: CONTROLLABLE ANOMALY GENERATOR USING DIFFUSION MODEL

被引:0
|
作者
Jiang, Bolin [1 ]
Xie, Yuqiu [1 ]
Li, Jiawei [2 ]
Li, Naiqi [1 ]
Jiang, Yong [1 ]
Xia, Shu-Tao [1 ]
机构
[1] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Beijing, Peoples R China
[2] Huawei Mfg, Shenzhen, Peoples R China
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024 | 2024年
关键词
Anomaly detection; Data augmentation; Diffusion model;
D O I
10.1109/ICASSP48485.2024.10447663
中图分类号
学科分类号
摘要
Data augmentation has been widely applied in anomaly detection, which generates synthetic anomalous data for training. However, most existing anomaly augmentation methods focus on image-level cut-and-paste techniques, resulting in less realistic synthetic results, and are restricted to a few pre-defined patterns. In this paper, we propose our Controllable Anomaly Generator (CAGen) for anomaly data augmentation, which can generate high-quality images, and be flexibly controlled with text prompts. Specifically, our method finetunes a ControlNet model by using binary masks and textual prompts to control the spatial localization and style of generated anomalies. To further augment the resemblance between the generated features and normal samples, we propose a fusion method that integrates the generated anomalous features with the features of normal samples. Experiments on standard anomaly detection benchmarks show that the proposed data augmentation method significantly leads to a 0.4/3.1 improvement in the AUROC/AP metric.
引用
收藏
页码:3110 / 3114
页数:5
相关论文
共 50 条
  • [21] Universal Fingerprint Generation: Controllable Diffusion Model With Multimodal Conditions
    Grosz, Steven A.
    Jain, Anil K.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (02) : 1028 - 1041
  • [22] TransFusion - A Transparency-Based Diffusion Model for Anomaly Detection
    Fucka, Matic
    Zavrtanik, Vitj An
    Skocaj, Danijel
    COMPUTER VISION-ECCV 2024, PT XXXV, 2025, 15093 : 91 - 108
  • [23] CHLORINE GENERATOR USING A GAS-DIFFUSION ELECTRODE
    FURUYA, N
    SUZUKI, Y
    SHIRAI, T
    DENKI KAGAKU, 1989, 57 (04): : 332 - 334
  • [24] SELF-DIFFUSION EXPERIMENT USING A NEUTRON GENERATOR
    BENENSON, RE
    RIMAWI, K
    CHAITIN, M
    GOLDENBERG, S
    KAPLAN, D
    AMERICAN JOURNAL OF PHYSICS, 1976, 44 (11) : 1089 - 1093
  • [25] CONTROLLABLE RANDOM-PULSE GENERATOR
    VODOVOZOV, AM
    LABICHEV, VN
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1983, 26 (05) : 1125 - 1126
  • [26] NOISE GENERATOR WITH CONTROLLABLE SPECTRUM.
    Fryer, D.K.
    Electronic Engineering (London), 1979, 51 (626):
  • [27] CONTROLLABLE RC HARMONIC GENERATOR.
    Bodunov, V.P.
    Semenistyi, K.S.
    Smetanin, V.K.
    1600, (26):
  • [28] Generator for single bubbles of controllable size
    Ohl, CD
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (01): : 252 - 254
  • [29] ArgU: A Controllable Factual Argument Generator
    Saha, Sougata
    Srihari, Rohini
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 8373 - 8388
  • [30] Visualization of anomaly using mixture model
    Iwata, T
    Saito, K
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 2, PROCEEDINGS, 2004, 3214 : 624 - 631