Domain-specific information preservation for Alzheimer's disease diagnosis with incomplete multi-modality neuroimages

被引:0
|
作者
Xu, Haozhe [1 ,2 ,3 ,4 ]
Wang, Jian [5 ]
Feng, Qianjin [1 ,3 ,4 ]
Zhang, Yu [1 ,3 ,4 ]
Ning, Zhenyuan [1 ,3 ,4 ]
机构
[1] Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Peoples R China
[2] Sun Yat Sen Univ, Guangdong Prov Clin Res Ctr Canc, Dept Radiotherapy, State Key Lab Oncol South China,Canc Ctr, Guangzhou 510515, Peoples R China
[3] Southern Med Univ, Guangdong Prov Key Lab Med Image Proc, Guangzhou 510515, Peoples R China
[4] Southern Med Univ, Guangdong Prov Engn Lab Med Imaging & Diagnost Tec, Guangzhou 510515, Peoples R China
[5] Southern Med Univ, Nanfang Hosp, Dept Radiat Oncol, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Alzheimer's disease; Incomplete modality; Generative adversarial network; Domain-specific; PET; NETWORKS; MR;
D O I
10.1016/j.media.2024.103448
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although multi-modality neuroimages have advanced the early diagnosis of Alzheimer's Disease (AD), missing modality issue still poses a unique challenge in the clinical practice. Recent studies have tried to impute the missing data so as to utilize all available subjects for training robust multi-modality models. However, these studies may overlook the modality-specific information inherent in multi-modality data, that is, different modalities possess distinct imaging characteristics and focus on different aspects of the disease. In this paper, we propose a domain-specific information preservation (DSIP) framework, consisting of modality imputation stage and status identification stage, for AD diagnosis with incomplete multi-modality neuroimages. In the first stage, a specificity-induced generative adversarial network (SIGAN) is developed to bridge the modality gap and capture modality-specific details for imputing high-quality neuroimages. In the second stage, a specificity- promoted diagnosis network (SPDN) is designed to promote the inter-modality feature interaction and the classifier robustness for identifying disease status accurately. Extensive experiments demonstrate the proposed method significantly outperforms state-of-the-art methods in both modality imputation and status identification tasks.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Latent relation shared learning for endometrial cancer diagnosis with incomplete multi-modality medical images
    Li, Jiaqi
    Liao, Lejian
    Jia, Meihuizi
    Chen, Zhendong
    Liu, Xin
    ISCIENCE, 2024, 27 (08)
  • [32] Tau-network mapping of domain-specific cognitive impairment in Alzheimer's disease
    Luan, Ying
    Rubinski, Anna
    Biel, Davina
    Svaldi, Diana Otero
    Higgins, Ixavier Alonzo
    Shcherbinin, Sergey
    Pontecorvo, Michael
    Franzmeier, Nicolai
    Ewers, Michael
    NEUROIMAGE-CLINICAL, 2024, 44
  • [33] Domain-specific improvement of cognition on memantine in patients with Alzheimer's disease treated with rivastigmine
    Riepe, Matthias W.
    Adler, Georg
    Ibach, Bernd
    Weinkauf, Birgit
    Tracik, Ferenc
    Gunay, Ibrahim
    DEMENTIA AND GERIATRIC COGNITIVE DISORDERS, 2007, 23 (05) : 301 - 306
  • [34] Multi-modality machine learning predicting Parkinson’s disease
    Mary B. Makarious
    Hampton L. Leonard
    Dan Vitale
    Hirotaka Iwaki
    Lana Sargent
    Anant Dadu
    Ivo Violich
    Elizabeth Hutchins
    David Saffo
    Sara Bandres-Ciga
    Jonggeol Jeff Kim
    Yeajin Song
    Melina Maleknia
    Matt Bookman
    Willy Nojopranoto
    Roy H. Campbell
    Sayed Hadi Hashemi
    Juan A. Botia
    John F. Carter
    David W. Craig
    Kendall Van Keuren-Jensen
    Huw R. Morris
    John A. Hardy
    Cornelis Blauwendraat
    Andrew B. Singleton
    Faraz Faghri
    Mike A. Nalls
    npj Parkinson's Disease, 8
  • [35] Multi-modality machine learning predicting Parkinson's disease
    Makarious, Mary B.
    Leonard, Hampton L.
    Vitale, Dan
    Iwaki, Hirotaka
    Sargent, Lana
    Dadu, Anant
    Violich, Ivo
    Hutchins, Elizabeth
    Saffo, David
    Bandres-Ciga, Sara
    Kim, Jonggeol Jeff
    Song, Yeajin
    Maleknia, Melina
    Bookman, Matt
    Nojopranoto, Willy
    Campbell, Roy H.
    Hashemi, Sayed Hadi
    Botia, Juan A.
    Carter, John F.
    Craig, David W.
    Van Keuren-Jensen, Kendall
    Morris, Huw R.
    Hardy, John A.
    Blauwendraat, Cornelis
    Singleton, Andrew B.
    Faghri, Faraz
    Nalls, Mike A.
    NPJ PARKINSONS DISEASE, 2022, 8 (01)
  • [36] Incomplete multi-modal representation learning for Alzheimer's disease diagnosis
    Liu, Yanbei
    Fan, Lianxi
    Zhang, Changqing
    Zhou, Tao
    Xiao, Zhitao
    Geng, Lei
    Shen, Dinggang
    MEDICAL IMAGE ANALYSIS, 2021, 69
  • [37] Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's Disease and mild cognitive impairment identification
    Liu, Feng
    Wee, Chong-Yaw
    Chen, Huafu
    Shen, Dinggang
    NEUROIMAGE, 2014, 84 : 466 - 475
  • [38] Discovering network phenotype between genetic risk factors and disease status via diagnosis-aligned multi-modality regression method in Alzheimer's disease
    Wang, Meiling
    Hao, Xiaoke
    Huang, Jiashuang
    Shao, Wei
    Zhang, Daoqiang
    BIOINFORMATICS, 2019, 35 (11) : 1948 - 1957
  • [39] Joint multi-site domain adaptation and multi-modality feature selection for the diagnosis of psychiatric disorders
    Ji, Yixin
    Silva, Rogers F.
    Adali, Tuelay
    Wen, Xuyun
    Zhu, Qi
    Jiang, Rongtao
    Zhang, Daoqiang
    Qi, Shile
    Calhoun, Vince D.
    NEUROIMAGE-CLINICAL, 2024, 43
  • [40] AlzPlatform: An Alzheimer's Disease Domain-Specific Chemogenornics Knowledgebase for Polypharmacology and Target Identification Research
    Liu, Haibin
    Wang, Lirong
    Lv, Mingliang
    Pei, Rongrong
    Li, Peibo
    Pei, Zhong
    Wang, Yonggang
    Su, Weiwei
    Xie, Xiang-Qun
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2014, 54 (04) : 1050 - 1060