Deep Relevant Feature Focusing for Out-of-Distribution Generalization

被引:1
|
作者
Wang, Fawu [1 ]
Zhang, Kang [1 ]
Liu, Zhengyu [1 ]
Yuan, Xia [1 ]
Zhao, Chunxia [1 ]
机构
[1] Nanjing Univ Sci & Technol, Nanjing 210094, Peoples R China
关键词
Domain generalization; Out-of-distribution generalization; Domain shifts; Feature focusing;
D O I
10.1007/978-3-031-18907-4_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolution Neural Networks (CNNs) often fail to maintain their performance when they confront new test domains. Unlike human's strong ability of abstraction and connection, CNNs learn everything relevant and irrelevant from their training data while humans can understand its essential features and form. In this paper, we propose a method to improve the cross-domain object recognition ability from the model feature level: Our method masks the partial values of the feature maps to force models to focus on potentially important features. Multiple experiments on the PACS and VLCS confirm our intuition and show that this simple method outperforms previous domain generalization solutions.
引用
收藏
页码:245 / 253
页数:9
相关论文
共 50 条
  • [31] RetroOOD: Understanding Out-of-Distribution Generalization in Retrosynthesis Prediction
    Yu, Yemin
    Yuan, Luotian
    Wei, Ying
    Gao, Hanyu
    Wu, Fei
    Wang, Zhihua
    Ye, Xinhai
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 1, 2024, : 374 - 382
  • [32] Can Subnetwork Structure be the Key to Out-of-Distribution Generalization?
    Zhang, Dinghuai
    Ahuja, Kartik
    Xu, Yilun
    Wang, Yisen
    Courville, Aaron
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [33] Face Reconstruction Transfer Attack as Out-of-Distribution Generalization
    June, Yoon Gyo
    Park, Jaewoo
    Dong, Xingbo
    Park, Hojin
    Teoh, Andrew Beng Jin
    Camps, Octavia
    COMPUTER VISION - ECCV 2024, PT LXXV, 2025, 15133 : 396 - 413
  • [34] Learning Invariant Graph Representations for Out-of-Distribution Generalization
    Li, Haoyang
    Zhang, Ziwei
    Wang, Xin
    Zhu, Wenwu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [35] Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization
    Rame, Alexandre
    Dancette, Corentin
    Cord, Matthieu
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [36] Exploring feature sparsity for out-of-distribution detection
    Chen, Qichao
    Li, Kuan
    Chen, Zhiyuan
    Maul, Tomas
    Yin, Jianping
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [37] Hyperdimensional Feature Fusion for Out-of-Distribution Detection
    Wilson, Samuel
    Fischer, Tobias
    Sunderhauf, Niko
    Dayoub, Feras
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 2643 - 2653
  • [38] Understanding the Feature Norm for Out-of-Distribution Detection
    Park, Jaewoo
    Chai, Jacky Chen Long
    Yoon, Jaeho
    Teoh, Andrew Beng Jin
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 1557 - 1567
  • [39] Supervision Adaptation Balancing In-Distribution Generalization and Out-of-Distribution Detection
    Zhao, Zhilin
    Cao, Longbing
    Lin, Kun-Yu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (12) : 15743 - 15758
  • [40] Out-of-Distribution Detection in Deep Learning Models: A Feature Space-Based Approach
    Carvalho, Thiago Medeiros
    Vellasco, Marley
    Amaral, Jose Franco
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,