Deep Relevant Feature Focusing for Out-of-Distribution Generalization

被引:1
|
作者
Wang, Fawu [1 ]
Zhang, Kang [1 ]
Liu, Zhengyu [1 ]
Yuan, Xia [1 ]
Zhao, Chunxia [1 ]
机构
[1] Nanjing Univ Sci & Technol, Nanjing 210094, Peoples R China
关键词
Domain generalization; Out-of-distribution generalization; Domain shifts; Feature focusing;
D O I
10.1007/978-3-031-18907-4_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolution Neural Networks (CNNs) often fail to maintain their performance when they confront new test domains. Unlike human's strong ability of abstraction and connection, CNNs learn everything relevant and irrelevant from their training data while humans can understand its essential features and form. In this paper, we propose a method to improve the cross-domain object recognition ability from the model feature level: Our method masks the partial values of the feature maps to force models to focus on potentially important features. Multiple experiments on the PACS and VLCS confirm our intuition and show that this simple method outperforms previous domain generalization solutions.
引用
收藏
页码:245 / 253
页数:9
相关论文
共 50 条
  • [21] Out-of-distribution Generalization with Causal Invariant Transformations
    Wang, Ruoyu
    Yi, Mingyang
    Chen, Zhitang
    Zhu, Shengyu
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 375 - 385
  • [22] Out-of-distribution generalization for learning quantum dynamics
    Matthias C. Caro
    Hsin-Yuan Huang
    Nicholas Ezzell
    Joe Gibbs
    Andrew T. Sornborger
    Lukasz Cincio
    Patrick J. Coles
    Zoë Holmes
    Nature Communications, 14
  • [23] Out-of-Distribution Generalization via Risk Extrapolation
    Krueger, David
    Caballero, Ethan
    Jacobsen, Joern-Henrik
    Zhang, Amy
    Binas, Jonathan
    Zhang, Dinghuai
    Le Priol, Remi
    Courville, Aaron
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [24] Towards a Theoretical Framework of Out-of-Distribution Generalization
    Ye, Haotian
    Xie, Chuanlong
    Cai, Tianle
    Li, Ruichen
    Li, Zhenguo
    Wang, Liwei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [25] Toward Out-of-Distribution Generalization Through Inductive Biases
    Moruzzi, Caterina
    PHILOSOPHY AND THEORY OF ARTIFICIAL INTELLIGENCE 2021, 2022, 63 : 57 - 66
  • [26] DIVE: Subgraph Disagreement for Graph Out-of-Distribution Generalization
    Sun, Xin
    Wang, Liang
    Liu, Qiang
    Wu, Shu
    Wang, Zilei
    Wang, Liang
    PROCEEDINGS OF THE 30TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2024, 2024, : 2794 - 2805
  • [27] Discovering causally invariant features for out-of-distribution generalization
    Wang, Yujie
    Yu, Kui
    Xiang, Guodu
    Cao, Fuyuan
    Liang, Jiye
    PATTERN RECOGNITION, 2024, 150
  • [28] Graph Out-of-Distribution Generalization With Controllable Data Augmentation
    Lu, Bin
    Zhao, Ze
    Gan, Xiaoying
    Liang, Shiyu
    Fu, Luoyi
    Wang, Xinbing
    Zhou, Chenghu
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6317 - 6329
  • [29] Probing out-of-distribution generalization in machine learning for materials
    Li, Kangming
    Rubungo, Andre Niyongabo
    Lei, Xiangyun
    Persaud, Daniel
    Choudhary, Kamal
    Decost, Brian
    Dieng, Adji Bousso
    Hattrick-Simpers, Jason
    COMMUNICATIONS MATERIALS, 2025, 6 (01)
  • [30] Tackling Domain Generalization for Out-of-Distribution Endoscopic Imaging
    Ali Teevno, Mansoor
    Ochoa-Ruiz, Gilberto
    Ali, Sharib
    MACHINE LEARNING IN MEDICAL IMAGING, PT II, MLMI 2024, 2025, 15242 : 43 - 52