Content Knowledge Identification with Multi-agent Large Language Models (LLMs)

被引:2
|
作者
Yang, Kaiqi [1 ]
Chu, Yucheng [1 ]
Darwin, Taylor [2 ]
Han, Ahreum [2 ]
Li, Hang [1 ]
Wen, Hongzhi [1 ]
Copur-Gencturk, Yasemin [2 ]
Tang, Jiliang [1 ]
Liu, Hui [1 ]
机构
[1] Michigan State Univ, E Lansing, MI 48824 USA
[2] Univ Southern Calif, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
Math Knowledge Development; Large Language Models; Multi-Agent Systems;
D O I
10.1007/978-3-031-64299-9_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Teachers' mathematical content knowledge (CK) is of vital importance and need in teacher professional development (PD) programs. Computer-aided asynchronous PD systems are the most recent proposed PD techniques. However, current automatic CK identification methods face challenges such as diversity of user responses and scarcity of high-quality annotated data. To tackle these challenges, we propose a Multi-Agent LLMs-based framework, LLMAgent-CK, to assess the user responses' coverage of identified CK learning goals without human annotations. Leveraging multi-agent LLMs with strong generalization ability and human-like discussions, our proposed LLMAgent-CK presents promising CK identifying performance on a real-world mathematical CK dataset MaCKT.
引用
收藏
页码:284 / 292
页数:9
相关论文
共 50 条
  • [31] Language Constructs for Multi-agent Programming
    Dennis, Louise
    Fisher, Michael
    Hepple, Anthony
    COMPUTATIONAL LOGIC IN MULTI-AGENT SYSTEMS, 2008, 5056 : 137 - 156
  • [32] An action language for multi-agent domains
    Baral, Chitta
    Gelfond, Gregory
    Pontelli, Enrico
    Tran Cao Son
    ARTIFICIAL INTELLIGENCE, 2022, 302
  • [33] Operating Conversational Large Language Models (LLMs)in the Presenceof Errors
    Gao, Zhen
    Deng, Jie
    Reviriego, Pedro
    Liu, Shanshan
    Pozo, Alejando
    Lombardi, Fabrizio
    IEEE NANOTECHNOLOGY MAGAZINE, 2025, 19 (01) : 31 - 37
  • [34] A Survey on the Use of Large Language Models (LLMs) in Fake News
    Papageorgiou, Eleftheria
    Chronis, Christos
    Varlamis, Iraklis
    Himeur, Yassine
    FUTURE INTERNET, 2024, 16 (08)
  • [35] Addressing digital inequities in the age of large language models (LLMs)
    Ng, Olivia
    Han, Siew Ping
    MEDICAL EDUCATION, 2024, 58 (12) : 1545 - 1546
  • [36] Social knowledge in multi-agent systems
    Marík, V
    Pechoucek, M
    Stepánková, O
    MULTI-AGENT SYSTEMS AND APPLICATIONS, 2001, 2086 : 211 - 245
  • [37] A Multi-Agent Knowledge Integration Model
    Wang, Yong
    Wang, Ying
    INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND AUTOMATION (ICCEA 2014), 2014, : 474 - 480
  • [38] Social knowledge in multi-agent systems
    Marík, V
    Pechoucek, M
    2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 1950 - 1957
  • [39] On the Learnability of Knowledge in Multi-Agent Logics
    Mocanu, Ionela G.
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 4907 - 4908
  • [40] Multi-agent architecture for Knowledge Discovery
    Pop, Daniel
    Negru, Viorel
    Sandru, Calin
    SYNASC 2006: EIGHTH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, PROCEEDINGS, 2007, : 217 - +