A Survey on the Use of Large Language Models (LLMs) in Fake News

被引:5
|
作者
Papageorgiou, Eleftheria [1 ]
Chronis, Christos [1 ]
Varlamis, Iraklis [1 ]
Himeur, Yassine [2 ]
机构
[1] Harokopio Univ Athens, Dept Informat & Telematics, GR-17778 Athens, Greece
[2] Univ Dubai, Coll Engn & Informat Technol, POB 14143, Dubai, U Arab Emirates
关键词
fake news; fake profiles; fact-checking; large language models (LLMs); text classification;
D O I
10.3390/fi16080298
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The proliferation of fake news and fake profiles on social media platforms poses significant threats to information integrity and societal trust. Traditional detection methods, including rule-based approaches, metadata analysis, and human fact-checking, have been employed to combat disinformation, but these methods often fall short in the face of increasingly sophisticated fake content. This review article explores the emerging role of Large Language Models (LLMs) in enhancing the detection of fake news and fake profiles. We provide a comprehensive overview of the nature and spread of disinformation, followed by an examination of existing detection methodologies. The article delves into the capabilities of LLMs in generating both fake news and fake profiles, highlighting their dual role as both a tool for disinformation and a powerful means of detection. We discuss the various applications of LLMs in text classification, fact-checking, verification, and contextual analysis, demonstrating how these models surpass traditional methods in accuracy and efficiency. Additionally, the article covers LLM-based detection of fake profiles through profile attribute analysis, network analysis, and behavior pattern recognition. Through comparative analysis, we showcase the advantages of LLMs over conventional techniques and present case studies that illustrate practical applications. Despite their potential, LLMs face challenges such as computational demands and ethical concerns, which we discuss in more detail. The review concludes with future directions for research and development in LLM-based fake news and fake profile detection, underscoring the importance of continued innovation to safeguard the authenticity of online information.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Large language models (LLMs): survey, technical frameworks, and future challenges
    Kumar, Pranjal
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (09)
  • [2] A Comparative Study in Large Language Models Usage for Fake News Detection
    Emil, Repede Stefan
    Brad, Remus
    ADVANCES IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, 2024, 4 (04): : 2810 - 2823
  • [3] Lower Energy Large Language Models (LLMs)
    Lin, Hsiao-Ying
    Voas, Jeffrey
    COMPUTER, 2023, 56 (10) : 14 - 16
  • [4] Towards Safer Large Language Models (LLMs)
    Lawrence, Carolin
    Bifulco, Roberto
    Gashteovski, Kiril
    Hung, Chia-Chien
    Ben Rim, Wiem
    Shaker, Ammar
    Oyamada, Masafumi
    Sadamasa, Kunihiko
    Enomoto, Masafumi
    Takeoka, Kunihiro
    NEC Technical Journal, 2024, 17 (02): : 64 - 74
  • [5] LARGE LANGUAGE MODELS (LLMS) AND CHATGPT FOR BIOMEDICINE
    Arighi, Cecilia
    Brenner, Steven
    Lu, Zhiyong
    BIOCOMPUTING 2024, PSB 2024, 2024, : 641 - 644
  • [6] Large language models (LLMs) and the institutionalization of misinformation
    Garry, Maryanne
    Chan, Way Ming
    Foster, Jeffrey
    Henkel, Linda A.
    TRENDS IN COGNITIVE SCIENCES, 2024, 28 (12) : 1078 - 1088
  • [7] A Survey on Natural Language Processing for Fake News Detection
    Oshikawa, Ray
    Qian, Jing
    Wang, William Yang
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), 2020, : 6086 - 6093
  • [8] linguagem grande (LLMs) Linguistic ambiguity analysis in large language models (LLMs)
    Moraes, Lavinia de Carvalho
    Silverio, Irene Cristina
    Marques, Rafael Alexandre Sousa
    Anaia, Bianca de Castro
    de Paula, Dandara Freitas
    Faria, Maria Carolina Schincariol de
    Cleveston, Iury
    Correia, Alana de Santana
    Freitag, Raquel Meister Ko
    TEXTO LIVRE-LINGUAGEM E TECNOLOGIA, 2025, 18
  • [9] Recommender Systems in the Era of Large Language Models (LLMs)
    Zhao, Zihuai
    Fan, Wenqi
    Li, Jiatong
    Liu, Yunqing
    Mei, Xiaowei
    Wang, Yiqi
    Wen, Zhen
    Wang, Fei
    Zhao, Xiangyu
    Tang, Jiliang
    Li, Qing
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6889 - 6907
  • [10] Large language models (LLMs) as agents for augmented democracy
    Gudino, Jairo F.
    Grandi, Umberto
    Hidalgo, Cesar
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 382 (2285):