A Survey on the Use of Large Language Models (LLMs) in Fake News

被引:5
|
作者
Papageorgiou, Eleftheria [1 ]
Chronis, Christos [1 ]
Varlamis, Iraklis [1 ]
Himeur, Yassine [2 ]
机构
[1] Harokopio Univ Athens, Dept Informat & Telematics, GR-17778 Athens, Greece
[2] Univ Dubai, Coll Engn & Informat Technol, POB 14143, Dubai, U Arab Emirates
关键词
fake news; fake profiles; fact-checking; large language models (LLMs); text classification;
D O I
10.3390/fi16080298
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The proliferation of fake news and fake profiles on social media platforms poses significant threats to information integrity and societal trust. Traditional detection methods, including rule-based approaches, metadata analysis, and human fact-checking, have been employed to combat disinformation, but these methods often fall short in the face of increasingly sophisticated fake content. This review article explores the emerging role of Large Language Models (LLMs) in enhancing the detection of fake news and fake profiles. We provide a comprehensive overview of the nature and spread of disinformation, followed by an examination of existing detection methodologies. The article delves into the capabilities of LLMs in generating both fake news and fake profiles, highlighting their dual role as both a tool for disinformation and a powerful means of detection. We discuss the various applications of LLMs in text classification, fact-checking, verification, and contextual analysis, demonstrating how these models surpass traditional methods in accuracy and efficiency. Additionally, the article covers LLM-based detection of fake profiles through profile attribute analysis, network analysis, and behavior pattern recognition. Through comparative analysis, we showcase the advantages of LLMs over conventional techniques and present case studies that illustrate practical applications. Despite their potential, LLMs face challenges such as computational demands and ethical concerns, which we discuss in more detail. The review concludes with future directions for research and development in LLM-based fake news and fake profile detection, underscoring the importance of continued innovation to safeguard the authenticity of online information.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] AGE-RELATED VALUE ORIENTATIONS IN LARGE LANGUAGE MODELS (LLMS)
    Zhang, Xin
    Ren, Yuanyi
    Song, Guojie
    INNOVATION IN AGING, 2024, 8 : 1010 - 1010
  • [42] Harnessing large language models (LLMs) for candidate gene prioritization and selection
    Mohammed Toufiq
    Darawan Rinchai
    Eleonore Bettacchioli
    Basirudeen Syed Ahamed Kabeer
    Taushif Khan
    Bishesh Subba
    Olivia White
    Marina Yurieva
    Joshy George
    Noemie Jourde-Chiche
    Laurent Chiche
    Karolina Palucka
    Damien Chaussabel
    Journal of Translational Medicine, 21
  • [43] Enhancing Accessibility in Software Engineering Projects with Large Language Models (LLMs)
    Aljedaani, Wajdi
    Eler, Marcelo Medeiros
    Parthasarathy, P. D.
    PROCEEDINGS OF THE 56TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, SIGCSE TS 2025, VOL 2, 2025, : 25 - 31
  • [44] An Implicit Semantic Enhanced Fine-Grained Fake News Detection Method Based on Large Language Models
    Jing K.
    Zheyong X.
    Tong X.
    Yuhao C.
    Xiangwen L.
    Enhong C.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2024, 61 (05): : 1250 - 1260
  • [45] Benchmarking Large Language Models for News Summarization
    Zhang, Tianyi
    Ladhak, Faisal
    Durmus, Esin
    Liang, Percy
    Mckeown, Kathleen
    Hashimoto, Tatsunori B.
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2024, 12 : 39 - 57
  • [46] Guidance for researchers and peer-reviewers on the ethical use of Large Language Models (LLMs) in scientific research workflows
    Ryan Watkins
    AI and Ethics, 2024, 4 (4): : 969 - 974
  • [47] Fake news detection: comparative evaluation of BERT-like models and large language models with generative AI-annotated data
    Raza, Shaina
    Paulen-Patterson, Drai
    Ding, Chen
    KNOWLEDGE AND INFORMATION SYSTEMS, 2025, : 3267 - 3292
  • [48] Large Language Models (LLMs) as Graphing Tools for Advanced Chemistry Education and Research
    Subasinghe, S. M. Supundrika
    Gersib, Simon G.
    Mankad, Neal P.
    JOURNAL OF CHEMICAL EDUCATION, 2025,
  • [49] Content Knowledge Identification with Multi-agent Large Language Models (LLMs)
    Yang, Kaiqi
    Chu, Yucheng
    Darwin, Taylor
    Han, Ahreum
    Li, Hang
    Wen, Hongzhi
    Copur-Gencturk, Yasemin
    Tang, Jiliang
    Liu, Hui
    ARTIFICIAL INTELLIGENCE IN EDUCATION, PT II, AIED 2024, 2024, 14830 : 284 - 292
  • [50] Large language models (LLMs) in radiology exams for medical students: Performance and consequences
    Gotta, Jennifer
    Hong, Quang Anh Le
    Koch, Vitali
    Gruenewald, Leon D.
    Geyer, Tobias
    Martin, Simon S.
    Scholtz, Jan-Erik
    Booz, Christian
    Dos Santos, Daniel Pinto
    Mahmoudi, Scherwin
    Eichler, Katrin
    Gruber-Rouh, Tatjana
    Hammerstingl, Renate
    Biciusca, Teodora
    Juergens, Lisa Joy
    Hoehne, Elena
    Mader, Christoph
    Vogl, Thomas J.
    Reschke, Philipp
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2024,