A Comprehensive Review on Data-Driven Methods of Lithium-Ion Batteries State-of-Health Forecasting

被引:0
|
作者
Pham, Thien [1 ,2 ]
Bui, Hung [1 ,2 ]
Nguyen, Mao [1 ,2 ]
Pham, Quang [1 ,2 ]
Vu, Vinh [1 ,2 ]
Le, Triet [1 ,2 ]
Quan, Tho [1 ,2 ]
机构
[1] Ho Chi Minh City Univ Technol HCMUT, Fac Comp Sci & Engn, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ Ho Chi Minh City, Ho Chi Minh City, Vietnam
关键词
data-driven methods; lithium-ion battery; state-of-health; time-series forecasting; USEFUL LIFE PREDICTION; SOH ESTIMATION; CHARGE ESTIMATION; PARTICLE FILTER; MODEL; DEGRADATION; PROGNOSTICS; DIAGNOSIS;
D O I
10.1002/widm.70009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lithium-ion batteries are widely used in moving devices due to their many advantages compared to other battery types. The prevalence of Lithium-ion batteries is evident, playing its clear role in the operation of small devices as well as large systems such as electric vehicles, flying devices, mobile devices, and more. Monitoring lithium-ion battery health is crucial for assessing, minimizing degradation, preventing explosions, and enabling timely replacements. Assessing health often involves predicting state-of-health (SoH) or remaining useful life (RUL), with numerous studies dedicated to this field. Hence, many research studies have been conducted on predicting SoH, with a primary focus on data-driven methods based on machine learning, owing to the recent advancements in artificial intelligence (AI) techniques. To provide a systematic overview of the trends in this emerging problem, we present a comprehensive survey of classified SoH forecasting methods, with a primary focus on data-driven approaches. The paper also offers an in-depth focus on recent advancements in deep learning (DL) models, an area that has not been thoroughly discussed previously. Furthermore, we highlight the importance of input features and emphasize the critical role of temporal attributes incorporated into the models. The insights provided in this paper offer readers a comprehensive understanding of the field, equipping them to effectively advance related future work.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: a review
    Yanshuo Liu
    Licheng Wang
    Dezhi Li
    Kai Wang
    Protection and Control of Modern Power Systems, 2023, 8
  • [32] State-of-Health Estimation for Lithium-Ion Batteries in Hybrid Electric Vehicles-A Review
    Zhang, Jianyu
    Li, Kang
    ENERGIES, 2024, 17 (22)
  • [33] Lithium-Ion Battery Ageing Behavior Pattern Characterization and State-of-Health Estimation Using Data-Driven Method
    Xia, Zhiyong
    Abu Qahouq, Jaber A.
    IEEE ACCESS, 2021, 9 : 98287 - 98304
  • [34] An Enhanced Data-Driven Model for Lithium-Ion Battery State-of-Health Estimation with Optimized Features and Prior Knowledge
    Huanyang Huang
    Jinhao Meng
    Yuhong Wang
    Lei Cai
    Jichang Peng
    Ji Wu
    Qian Xiao
    Tianqi Liu
    Remus Teodorescu
    Automotive Innovation, 2022, 5 : 134 - 145
  • [35] State-of-health estimation and knee point identification of lithium-ion battery based on data-driven and mechanism model
    Ni, Yulong
    Song, Kai
    Pei, Lei
    Li, Xiaoyu
    Wang, Tiansi
    Zhang, He
    Zhu, Chunbo
    Xu, Jianing
    APPLIED ENERGY, 2025, 385
  • [36] State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: a review
    Liu, Yanshuo
    Wang, Licheng
    Li, Dezhi
    Wang, Kai
    PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, 2023, 8 (01)
  • [37] Cycle life prediction of lithium-ion batteries based on data-driven methods
    Su, Laisuo
    Wu, Mengchen
    Li, Zhe
    Zhang, Jianbo
    ETRANSPORTATION, 2021, 10
  • [38] A data-driven intelligent hybrid method for health prognosis of lithium-ion batteries
    Bisht, Vimal Singh
    Hasan, Mashhood
    Malik, Hasmat
    Sunori, Sandeep
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (02) : 897 - 907
  • [39] Data-Driven Prediction Methods for Lithium-Ion Battery State of Health Based on Elbow Rule
    Zhang, Liu
    Xing, Bo
    Gao, Yanbing
    Yao, Lei
    Zhao, Dengfeng
    Ding, Jinquan
    Li, Yanyan
    IEEE ACCESS, 2024, 12 : 183581 - 183595
  • [40] Exploration of Imbalanced Regression in state-of-health estimation of Lithium-ion batteries
    Zhao, Zhibin
    Liu, Bingchen
    Wang, Fujin
    Zheng, Shiyu
    Yu, Qiuyu
    Zhai, Zhi
    Chen, Xuefeng
    JOURNAL OF ENERGY STORAGE, 2025, 105