A Comprehensive Review on Data-Driven Methods of Lithium-Ion Batteries State-of-Health Forecasting

被引:0
|
作者
Pham, Thien [1 ,2 ]
Bui, Hung [1 ,2 ]
Nguyen, Mao [1 ,2 ]
Pham, Quang [1 ,2 ]
Vu, Vinh [1 ,2 ]
Le, Triet [1 ,2 ]
Quan, Tho [1 ,2 ]
机构
[1] Ho Chi Minh City Univ Technol HCMUT, Fac Comp Sci & Engn, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ Ho Chi Minh City, Ho Chi Minh City, Vietnam
关键词
data-driven methods; lithium-ion battery; state-of-health; time-series forecasting; USEFUL LIFE PREDICTION; SOH ESTIMATION; CHARGE ESTIMATION; PARTICLE FILTER; MODEL; DEGRADATION; PROGNOSTICS; DIAGNOSIS;
D O I
10.1002/widm.70009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lithium-ion batteries are widely used in moving devices due to their many advantages compared to other battery types. The prevalence of Lithium-ion batteries is evident, playing its clear role in the operation of small devices as well as large systems such as electric vehicles, flying devices, mobile devices, and more. Monitoring lithium-ion battery health is crucial for assessing, minimizing degradation, preventing explosions, and enabling timely replacements. Assessing health often involves predicting state-of-health (SoH) or remaining useful life (RUL), with numerous studies dedicated to this field. Hence, many research studies have been conducted on predicting SoH, with a primary focus on data-driven methods based on machine learning, owing to the recent advancements in artificial intelligence (AI) techniques. To provide a systematic overview of the trends in this emerging problem, we present a comprehensive survey of classified SoH forecasting methods, with a primary focus on data-driven approaches. The paper also offers an in-depth focus on recent advancements in deep learning (DL) models, an area that has not been thoroughly discussed previously. Furthermore, we highlight the importance of input features and emphasize the critical role of temporal attributes incorporated into the models. The insights provided in this paper offer readers a comprehensive understanding of the field, equipping them to effectively advance related future work.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Online state-of-health prediction of lithium-ion batteries with limited labeled data
    Yu, Jinsong
    Yang, Jie
    Wu, Yao
    Tang, Diyin
    Dai, Jing
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (14) : 11345 - 11353
  • [22] Data-Driven State of Health Estimation for Lithium-Ion Batteries Based on Universal Feature Selection
    Li, Yimeng
    Huang, Pingyuan
    Gao, Li Ting
    Zhao, Chunwang
    Guo, Zhan-Sheng
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (04)
  • [23] Data-Driven State of Health Estimation Method of Lithium-ion Batteries for Partial Charging Curves
    Tang, Jinrui
    Li, Yang
    Wang, Shaojin
    Xiong, Binyu
    Li, Xiangjun
    Pan, Jinxuan
    Chen, Qihong
    Wang, Peng
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2024, 39 (04) : 2230 - 2243
  • [24] The state of health estimation of lithium-ion batteries based on data-driven and model fusion method
    Huang, Peng
    Gu, Pingwei
    Kang, Yongzhe
    Zhang, Ying
    Duan, Bin
    Zhang, Chenghui
    JOURNAL OF CLEANER PRODUCTION, 2022, 366
  • [25] State of health estimation of lithium-ion batteries based on feature optimization and data-driven models
    Mu, Guixiang
    Wei, Qingguo
    Xu, Yonghong
    Li, Jian
    Zhang, Hongguang
    Yang, Fubin
    Zhang, Jian
    Li, Qi
    ENERGY, 2025, 316
  • [26] Data-Driven Transfer-Stacking-Based State of Health Estimation for Lithium-Ion Batteries
    Wu, Ji
    Cui, Xuchen
    Meng, Jinhao
    Peng, Jichang
    Lin, Mingqiang
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (01) : 604 - 614
  • [27] Data-driven Comprehensive Evaluation of Lithium-ion Battery State of Health and Abnormal Battery Screening
    Jia J.
    Hu X.
    Deng Z.
    Xu H.
    Xiao W.
    Han F.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (14): : 141 - 149and159
  • [28] An Enhanced Data-Driven Model for Lithium-Ion Battery State-of-Health Estimation with Optimized Features and Prior Knowledge
    Huang, Huanyang
    Meng, Jinhao
    Wang, Yuhong
    Cai, Lei
    Peng, Jichang
    Wu, Ji
    Xiao, Qian
    Liu, Tianqi
    Teodorescu, Remus
    AUTOMOTIVE INNOVATION, 2022, 5 (02) : 134 - 145
  • [29] Improving the state-of-health estimation of lithium-ion batteries based on limited labeled data
    Han, Dou
    Zhang, Yongzhi
    Ruan, Haijun
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [30] Improving state-of-health estimation for lithium-ion batteries via unlabeled charging data
    Lin, Chuanping
    Xu, Jun
    Mei, Xuesong
    ENERGY STORAGE MATERIALS, 2023, 54 : 85 - 97