A Resource Allocation Strategy in Internet of Vehicles Based on Multi-Task Federated Learning and Incentive Mechanism

被引:0
|
作者
Zhang, Jianquan [1 ]
Huang, Fangting [2 ]
Zhu, Shuqing [3 ]
Xiao, Xiao [1 ]
机构
[1] Hubei Univ Sci & Technol, Coll Automat, Xianning 437000, Peoples R China
[2] Shenzhen Polytech Univ, Coll Artificial Intelligence, Shenzhen 518055, Peoples R China
[3] Hubei Univ Sci & Technol, Dept Int Educ, Xianning 437000, Peoples R China
关键词
Federated learning; Servers; Resource management; Computational modeling; Cloud computing; Training; Deep reinforcement learning; Data privacy; Optimization; Internet of Vehicles; federated learning; incentive mechanisms; cloud-edge game; resource allocation; ENABLED INTERNET; COMMUNICATION;
D O I
10.1109/TITS.2025.3528969
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
With the continuous emergence of Internet of Vehicles (IoV) applications, the demand for computational resources of many resource-intensive applications in IoV has shown an explosive growth trend, which poses a serious challenge to the limited computational resources of the vehicles themselves. This paper designs a federated learning structure with a two-layer game for vehicular networks, using intelligent roadside terminals for federated optimization. Meanwhile, this paper proposes a Federated Learning and Cloud-Edge Gaming with Incentive-Driven (FL-CEGID) algorithm for dynamic task offloading in IoV. Our proposed algorithm optimizes vehicle and computing resource allocation as well as cache updates through a hierarchical distributed approach, which has separate vehicle and edge intelligence strategies for offloading decisions and caching strategies. The experimental results show that our proposed FL-CEGID has significant improvements in transmission capacity, transmission delay, and advantages in different key tasks and times in IoV compared to other schemes.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Resource Allocation for Federated Knowledge Distillation Learning in Internet of Drones
    Yao, Jingjing
    Cal, Semih
    Sun, Xiang
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (07): : 8064 - 8074
  • [42] Research on a Task Offloading Strategy for the Internet of Vehicles Based on Reinforcement Learning
    Xiao, Shuo
    Wang, Shengzhi
    Zhuang, Jiayu
    Wang, Tianyu
    Liu, Jiajia
    SENSORS, 2021, 21 (18)
  • [43] On the Energy and Communication Efficiency Tradeoffs in Federated and Multi-Task Learning
    Savazzi, Stefano
    Rampa, Vittorio
    Kianoush, Sanaz
    Bennis, Mehdi
    2022 IEEE 33RD ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (IEEE PIMRC), 2022, : 1431 - 1437
  • [44] Smart contract-based resource allocation service mechanism for internet of vehicles
    Mao, Ming
    Yi, Peng
    Hou, Lilong
    Zhang, Guanying
    EXPERT SYSTEMS, 2023, 40 (06)
  • [45] Efficient Multi-Task Asynchronous Federated Learning in Edge Computing
    Cao, Xinyuan
    Ouyang, Tao
    Zhao, Kongyange
    Li, Yousheng
    Chen, Xu
    2024 IEEE/ACM 32ND INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE, IWQOS, 2024,
  • [46] Multi-Task Network Anomaly Detection using Federated Learning
    Zhao, Ying
    Chen, Junjun
    Wu, Di
    Teng, Jian
    Yu, Shui
    SOICT 2019: PROCEEDINGS OF THE TENTH INTERNATIONAL SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY, 2019, : 273 - 279
  • [47] Evolutionary multi-task allocation for mobile crowdsensing with limited resource
    Ji, Jianjiao
    Guo, Yinan
    Gong, Dunwei
    Shen, Xiaoning
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 63
  • [48] Resource-aware multi-criteria vehicle participation for federated learning in Internet of vehicles
    Wen, Jie
    Zhang, Jingbo
    Zhang, Zhixia
    Cui, Zhihua
    Cai, Xingjuan
    Chen, Jinjun
    INFORMATION SCIENCES, 2024, 664
  • [49] Incentive-Aware Resource Allocation for Multiple Model Owners in Federated Learning
    Chen, Feng-Yang
    Yen, Li-Hsing
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (02) : 549 - 562
  • [50] Joint Task Offloading and Multi-Task Offloading Based on NOMA Enhanced Internet of Vehicles in Edge Computing
    Jie Zhao
    Ahmed M. El-Sherbeeny
    Journal of Grid Computing, 2024, 22