A Resource Allocation Strategy in Internet of Vehicles Based on Multi-Task Federated Learning and Incentive Mechanism

被引:0
|
作者
Zhang, Jianquan [1 ]
Huang, Fangting [2 ]
Zhu, Shuqing [3 ]
Xiao, Xiao [1 ]
机构
[1] Hubei Univ Sci & Technol, Coll Automat, Xianning 437000, Peoples R China
[2] Shenzhen Polytech Univ, Coll Artificial Intelligence, Shenzhen 518055, Peoples R China
[3] Hubei Univ Sci & Technol, Dept Int Educ, Xianning 437000, Peoples R China
关键词
Federated learning; Servers; Resource management; Computational modeling; Cloud computing; Training; Deep reinforcement learning; Data privacy; Optimization; Internet of Vehicles; federated learning; incentive mechanisms; cloud-edge game; resource allocation; ENABLED INTERNET; COMMUNICATION;
D O I
10.1109/TITS.2025.3528969
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
With the continuous emergence of Internet of Vehicles (IoV) applications, the demand for computational resources of many resource-intensive applications in IoV has shown an explosive growth trend, which poses a serious challenge to the limited computational resources of the vehicles themselves. This paper designs a federated learning structure with a two-layer game for vehicular networks, using intelligent roadside terminals for federated optimization. Meanwhile, this paper proposes a Federated Learning and Cloud-Edge Gaming with Incentive-Driven (FL-CEGID) algorithm for dynamic task offloading in IoV. Our proposed algorithm optimizes vehicle and computing resource allocation as well as cache updates through a hierarchical distributed approach, which has separate vehicle and edge intelligence strategies for offloading decisions and caching strategies. The experimental results show that our proposed FL-CEGID has significant improvements in transmission capacity, transmission delay, and advantages in different key tasks and times in IoV compared to other schemes.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Divergent Selection Task Offloading Strategy for Connected Vehicles Based on Incentive Mechanism
    Yu, Senyu
    Guo, Yan
    Li, Ning
    Xue, Duan
    Yuan, Hao
    ELECTRONICS, 2023, 12 (09)
  • [32] Multi-Agent Reinforcement Learning for Efficient Resource Allocation in Internet of Vehicles
    Wang, Jun-Han
    He, He
    Cha, Jaesang
    Jeong, Incheol
    Ahn, Chang-Jun
    ELECTRONICS, 2025, 14 (01):
  • [33] Adaptive Resource Allocation for Blockchain-Based Federated Learning in Internet of Things
    Zhang, Jiaxiang
    Liu, Yiming
    Qin, Xiaoqi
    Xu, Xiaodong
    Zhang, Ping
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (12) : 10621 - 10635
  • [34] Efficient Reinforcement Learning in Resource Allocation Problems Through Permutation Invariant Multi-task Learning
    Cai, Desmond
    Lim, Shiau Hong
    Wynter, Laura
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 2270 - 2275
  • [35] Federated Learning for Edge Networks: Resource Optimization and Incentive Mechanism
    Khan, Latif U.
    Pandey, Shashi Raj
    Tran, Nguyen H.
    Saad, Walid
    Han, Zhu
    Nguyen, Minh N. H.
    Hong, Choong Seon
    IEEE COMMUNICATIONS MAGAZINE, 2020, 58 (10) : 88 - 93
  • [36] A Learning-Based Incentive Mechanism for Federated Learning
    Zhan, Yufeng
    Li, Peng
    Qu, Zhihao
    Zeng, Deze
    Guo, Song
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (07): : 6360 - 6368
  • [37] Multi-task Incentive Mechanism on Rural Co-operatives
    He Xiaolan
    MANAGEMENT ENGINEERING AND APPLICATIONS, 2010, : 33 - 38
  • [38] Resource Management and Optimization in Internet of Vehicles for Hierarchical Federated Learning
    Yuan, Tangju
    Chen, Liwan
    Jiang, Yutao
    Chen, Honghao
    Gong, Wenbin
    Gu, Yu
    IEEE ACCESS, 2024, 12 : 158174 - 158188
  • [39] A resource allocation strategy for internet of vehicles using reinforcement learning in edge computing environment
    Li, Yihong
    Liu, Zhengli
    Tao, Qi
    SOFT COMPUTING, 2023, 27 (07) : 3999 - 4009
  • [40] A resource allocation strategy for internet of vehicles using reinforcement learning in edge computing environment
    Yihong Li
    Zhengli Liu
    Qi Tao
    Soft Computing, 2023, 27 : 3999 - 4009