Development and validation of a machine learning model for predicting drug-drug interactions with oral diabetes medications

被引:2
|
作者
Kha, Quang-Hien [1 ,2 ]
Nguyen, Ngan Thi Kim [3 ]
Le, Nguyen Quoc Khanh [2 ,4 ,5 ]
Kang, Jiunn-Horng [6 ,7 ,8 ]
机构
[1] Taipei Med Univ, Coll Med, Int PhD Program Med, Taipei 110, Taiwan
[2] Taipei Med Univ, AIBioMed Res Grp, Taipei 110, Taiwan
[3] Natl Taiwan Normal Univ, Sch Life Sci, Program Nutr Sci, Taipei 106, Taiwan
[4] Taipei Med Univ, Coll Med, Inserv Master Program Artificial Intelligence Med, Taipei 110, Taiwan
[5] Taipei Med Univ Hosp, Translat Imaging Res Ctr, Taipei 110, Taiwan
[6] Taipei Med Univ, Coll Med, Dept Phys Med & Rehabil, Sch Med, Taipei 110, Taiwan
[7] Taipei Med Univ Hosp, Dept Phys Med & Rehabil, Taipei 110, Taiwan
[8] Taipei Med Univ, Grad Inst Nanomed & Med Engn, Coll Biomed Engn, Taipei 110, Taiwan
关键词
Drug-Drug Interactions; Oral Diabetes Medications; Machine Learning; eXtreme Gradient Boosting; Simplified Molecular Input Line Entry System; Comorbidity Management; TYPE-2; ROSIGLITAZONE; ATORVASTATIN; COMBINATION; METFORMIN;
D O I
10.1016/j.ymeth.2024.10.012
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Diabetes management is often complicated by comorbidities, requiring complex medication regimens that increase the risk of drug-drug interactions (DDIs), potentially compromising treatment outcomes or causing toxicity. Although machine learning (ML) models have made strides in DDI prediction, existing approaches lack specificity for oral diabetes medications and face challenges in interpretability. To address these limitations, we propose a novel ML-based framework utilizing the Simplified Molecular Input Line Entry System (SMILES) to encode structural information of oral diabetes drugs. Using this representation, we developed an XGBoost model, selecting molecular features through LASSO. Our dataset, sourced from DrugBank, included 42 oral diabetes drugs and 1,884 interacting drugs, divided into training, validation, and testing sets. The model identified 606 optimal features, achieving an F1-score of 0.8182. SHAP analysis was employed for feature interpretation, enhancing model transparency and clinical relevance. By predicting adverse DDIs, our model offers a valuable tool for clinical decision-making, aiding safer prescription practices. The 606 critical features provide insights into atomic-level interactions, linking computational predictions with biological experiments. We present a classification model specifically designed for predicting DDIs associated with oral diabetes medications, with an openly accessible web application to support diabetes management in multi-drug regimens and comorbidity settings.
引用
收藏
页码:81 / 88
页数:8
相关论文
共 50 条
  • [41] Drug-drug interactions and potentially inappropriate medications among elderly outpatients
    Fatemeh, Atrianfar
    Fatemeh, Rezaei
    Kazem, Heidari
    Mona, Kargar
    Reza, Javadi Mohammad
    Kheirollah, Gholami
    BRAZILIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2021, 57
  • [42] A Review of Pharmacokinetic Drug-Drug Interactions with the Anthelmintic Medications Albendazole and Mebendazole
    Pawluk, Shane Ashley
    Roels, Craig Allan
    Wilby, Kyle John
    Ensom, Mary H. H.
    CLINICAL PHARMACOKINETICS, 2015, 54 (04) : 371 - 383
  • [43] Drug-Drug Interactions among Elderly Patients with Diabetes
    Misra, Arpit
    Hansen, Leigh G.
    Chang, Stella
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2009, 18 : S242 - S243
  • [44] Drug Interactions With Oral Inhaled Medications
    Ajimura, Chanelle M.
    Jagan, Nikhil
    Morrow, Lee E.
    Malesker, Mark A.
    JOURNAL OF PHARMACY TECHNOLOGY, 2018, 34 (06) : 273 - 280
  • [45] Predicting drug-microbiome interactions with machine learning
    McCoubrey, Laura E.
    Gaisford, Simon
    Orlu, Mine
    Basit, Abdul W.
    BIOTECHNOLOGY ADVANCES, 2022, 54
  • [46] Evaluating the performance of machine-learning regression models for pharmacokinetic drug-drug interactions
    Gill, Jaidip
    Moullet, Marie
    Martinsson, Anton
    Miljkovic, Filip
    Williamson, Beth
    Arends, Rosalinda H.
    Pilla Reddy, Venkatesh
    CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2023, 12 (01): : 122 - 134
  • [47] Development and validation of a tool to assess the risk of QT drug-drug interactions in clinical practice
    Florine A. Berger
    Heleen van der Sijs
    Matthijs L. Becker
    Teun van Gelder
    Patricia M. L. A. van den Bemt
    BMC Medical Informatics and Decision Making, 20
  • [48] The Significance of Drug-Drug and Drug-Food Interactions of Oral Anticoagulation
    Vranckx, Pascal
    Valgimigli, Marco
    Heidbuchel, Hein
    ARRHYTHMIA & ELECTROPHYSIOLOGY REVIEW, 2018, 7 (01) : 55 - 61
  • [49] Development and validation of a tool to assess the risk of QT drug-drug interactions in clinical practice
    Berger, Florine A.
    van der Sijs, Heleen
    Becker, Matthijs L.
    van Gelder, Teun
    van den Bemt, Patricia M. L. A.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2020, 20 (01)
  • [50] Geometric Molecular Graph Representation Learning Model for Drug-Drug Interactions Prediction
    Jiang, Zhenyu
    Ding, Pingjian
    Shen, Cong
    Dai, Xiaopeng
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (12) : 7623 - 7632