Development and validation of a machine learning model for predicting drug-drug interactions with oral diabetes medications

被引:2
|
作者
Kha, Quang-Hien [1 ,2 ]
Nguyen, Ngan Thi Kim [3 ]
Le, Nguyen Quoc Khanh [2 ,4 ,5 ]
Kang, Jiunn-Horng [6 ,7 ,8 ]
机构
[1] Taipei Med Univ, Coll Med, Int PhD Program Med, Taipei 110, Taiwan
[2] Taipei Med Univ, AIBioMed Res Grp, Taipei 110, Taiwan
[3] Natl Taiwan Normal Univ, Sch Life Sci, Program Nutr Sci, Taipei 106, Taiwan
[4] Taipei Med Univ, Coll Med, Inserv Master Program Artificial Intelligence Med, Taipei 110, Taiwan
[5] Taipei Med Univ Hosp, Translat Imaging Res Ctr, Taipei 110, Taiwan
[6] Taipei Med Univ, Coll Med, Dept Phys Med & Rehabil, Sch Med, Taipei 110, Taiwan
[7] Taipei Med Univ Hosp, Dept Phys Med & Rehabil, Taipei 110, Taiwan
[8] Taipei Med Univ, Grad Inst Nanomed & Med Engn, Coll Biomed Engn, Taipei 110, Taiwan
关键词
Drug-Drug Interactions; Oral Diabetes Medications; Machine Learning; eXtreme Gradient Boosting; Simplified Molecular Input Line Entry System; Comorbidity Management; TYPE-2; ROSIGLITAZONE; ATORVASTATIN; COMBINATION; METFORMIN;
D O I
10.1016/j.ymeth.2024.10.012
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Diabetes management is often complicated by comorbidities, requiring complex medication regimens that increase the risk of drug-drug interactions (DDIs), potentially compromising treatment outcomes or causing toxicity. Although machine learning (ML) models have made strides in DDI prediction, existing approaches lack specificity for oral diabetes medications and face challenges in interpretability. To address these limitations, we propose a novel ML-based framework utilizing the Simplified Molecular Input Line Entry System (SMILES) to encode structural information of oral diabetes drugs. Using this representation, we developed an XGBoost model, selecting molecular features through LASSO. Our dataset, sourced from DrugBank, included 42 oral diabetes drugs and 1,884 interacting drugs, divided into training, validation, and testing sets. The model identified 606 optimal features, achieving an F1-score of 0.8182. SHAP analysis was employed for feature interpretation, enhancing model transparency and clinical relevance. By predicting adverse DDIs, our model offers a valuable tool for clinical decision-making, aiding safer prescription practices. The 606 critical features provide insights into atomic-level interactions, linking computational predictions with biological experiments. We present a classification model specifically designed for predicting DDIs associated with oral diabetes medications, with an openly accessible web application to support diabetes management in multi-drug regimens and comorbidity settings.
引用
收藏
页码:81 / 88
页数:8
相关论文
共 50 条
  • [31] DIVA: Exploration and Validation of Hypothesized Drug-Drug Interactions
    Kakar, T.
    Qin, X.
    Rundensteiner, E. A.
    Harrison, L.
    Sahoo, S. K.
    Dee, S.
    COMPUTER GRAPHICS FORUM, 2019, 38 (03) : 95 - 106
  • [32] Analysis of drug-drug interactions encountered in pharmaceutical validation
    Roelens, M.
    Alili, J. -M.
    Barrail-Tran, A.
    Taburet, A. -M.
    Vincent, I.
    INTERNATIONAL JOURNAL OF CLINICAL PHARMACY, 2012, 34 (01) : 188 - 188
  • [33] A positive and unlabeled learning framework based on extreme learning machine for drug-drug interactions discovery
    Bi X.
    Ma H.
    Li J.
    Ma Y.
    Chen D.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (11) : 1 - 12
  • [34] Predicting Drug-Drug Interactions Based on Integrated Similarity and Semi-Supervised Learning
    Yan, Cheng
    Duan, Guihua
    Zhang, Yayan
    Wu, Fang-Xiang
    Pan, Yi
    Wang, Jianxin
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (01) : 168 - 179
  • [35] CNN-DDI: A novel deep learning method for predicting drug-drug interactions
    Zhang, Chengcheng
    Zang, Tianyi
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 1708 - 1713
  • [36] Attention-based Knowledge Graph Representation Learning for Predicting Drug-drug Interactions
    Su, Xiaorui
    Hu, Lun
    You, Zhuhong
    Hu, Pengwei
    Zhao, Bowei
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (03)
  • [37] Estimating the magnitude of oral antipsychotic drug-drug interactions
    Howe, A.
    Pesa, J.
    Kozma, C.
    VALUE IN HEALTH, 2008, 11 (03) : A109 - A109
  • [38] Predicting Drug Candidate Victims of Drug-Drug Interactions, using Microdosing
    Marie Croft
    Brendan Keely
    Ian Morris
    Lan Tann
    Graham Lappin
    Clinical Pharmacokinetics, 2012, 51 : 237 - 246
  • [39] Predicting Drug Candidate Victims of Drug-Drug Interactions, using Microdosing
    Croft, Marie
    Keely, Brendan
    Morris, Ian
    Tann, Lan
    Lappin, Graham
    CLINICAL PHARMACOKINETICS, 2012, 51 (04) : 237 - 246
  • [40] Drug-drug interactions between antithrombotic medications and the risk of gastrointestinal bleeding
    Delaney, Joseph A.
    Opatrny, Lucie
    Brophy, James M.
    Suissa, Samy
    CANADIAN MEDICAL ASSOCIATION JOURNAL, 2007, 177 (04) : 347 - 351