Gohberg-Semencul Toeplitz Covariance Estimation via Autoregressive Parameters

被引:0
|
作者
Boeck, Benedikt [1 ]
Semmler, Dominik [1 ]
Fesl, Benedikt [1 ]
Baur, Michael [1 ]
Utschick, Wolfgang [1 ]
机构
[1] Tech Univ Munich, Lehrstuhl Methoden Signalverarbeitung, D-80333 Munich, Germany
关键词
Estimation; Covariance matrices; Tuning; Matrix decomposition; Vectors; Array signal processing; Standards; Parallel processing; Optimization; Hands; Covariance estimation; autoregressive processes; Gohberg-Semencul; Toeplitz; likelihood estimation; MAXIMUM-LIKELIHOOD-ESTIMATION; AUTOCOVARIANCE MATRICES; INCOMPLETE-DATA; OPTIMAL RATES; BIG DATA; FACTORIZATION; CONVERGENCE; INVERSE;
D O I
10.1109/TSP.2025.3536101
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The use of prior structural knowledge is essential for the estimation of covariance matrices and their inverses when only few data samples are accessible. A well-known example is the knowledge that the covariance matrix is Toeplitz-structured, which occurs when dealing with wide-sense-stationary processes. Exploiting the close relation between autoregressive parameters and inverse covariance matrices, this paper introduces a new class of estimators for Toeplitz-structured covariance matrices and their inverses. To achieve this, we derive novel constraint sets for autoregressive parameters by leveraging their connection to the so-called Gohberg-Semencul decomposition. While these constraint sets guarantee the corresponding inverse covariance matrix to be positive definite and, thus, enable a proper estimation of the covariance matrix by inversion, they also build a means to control the estimator's performance by hyperparameter tuning. The derived constraint sets comprise simple box constraints enabling computationally cheap estimators in closed form. Due to the ensured positive definiteness, the proposed estimators perform well for both the estimation of the covariance matrix and its inverse. Extensive simulation results validate the proposed estimators' efficacy for several standard Toeplitz-structured covariance matrices commonly employed in a wide range of applications.
引用
收藏
页码:858 / 875
页数:18
相关论文
共 50 条
  • [31] Maximum-Likelihood Estimation for Covariance Matrix in Compound-Gaussian Clutter via Autoregressive Modeling
    Li, Liang
    Cui, Guolong
    Yi, Wei
    Kong, Lingjiang
    Yang, Xiaobo
    2014 IEEE RADAR CONFERENCE, 2014, : 1025 - 1029
  • [32] Modeling covariance parameters for purely autoregressive correlated longitudinal data
    Al-Rawwash, M
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2005, 34 (01) : 73 - 83
  • [33] Time Varying Autoregressive Moving Average Models for Covariance Estimation
    Wiesel, Ami
    Bibi, Ofir
    Globerson, Amir
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (11) : 2791 - 2801
  • [34] Covariance operator estimation of a functional autoregressive process with random coefficients
    Abdelaziz, Allam
    Tahar, Mourid
    STATISTICS & PROBABILITY LETTERS, 2014, 84 : 1 - 8
  • [35] On estimation of parameters for spatial autoregressive model
    Davydov Y.
    Paulauskas V.
    Statistical Inference for Stochastic Processes, 2008, 11 (3) : 237 - 247
  • [36] Estimation of Mean and Covariance Operator of Autoregressive Processes in Banach Spaces
    Denis Bosq
    Statistical Inference for Stochastic Processes, 2002, 5 (3) : 287 - 306
  • [37] Iterative estimation algorithm of autoregressive parameters
    Kazlauskas, Kazys
    Kazlauskas, Jaunius
    INFORMATICA, 2006, 17 (02) : 199 - 206
  • [38] MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS OF AUTOREGRESSIVE PROCESSES WITH MOVING AVERAGE RESIDUALS AND OTHER COVARIANCE MATRICES WITH LINEAR STRUCTURE
    ANDERSON, TW
    ANNALS OF STATISTICS, 1975, 3 (06): : 1283 - 1304
  • [39] A Toeplitz Covariance Matrix Reconstruction Approach for Direction-of-Arrival Estimation
    Wu, Xiaohuan
    Zhu, Wei-Ping
    Yan, Jun
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2017, 66 (09) : 8223 - 8237
  • [40] An em-algorithm for band-toeplitz covariance matrix estimation
    Christensen, Lars P. B.
    2007 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol III, Pts 1-3, Proceedings, 2007, : 1021 - 1024