Gohberg-Semencul Toeplitz Covariance Estimation via Autoregressive Parameters

被引:0
|
作者
Boeck, Benedikt [1 ]
Semmler, Dominik [1 ]
Fesl, Benedikt [1 ]
Baur, Michael [1 ]
Utschick, Wolfgang [1 ]
机构
[1] Tech Univ Munich, Lehrstuhl Methoden Signalverarbeitung, D-80333 Munich, Germany
关键词
Estimation; Covariance matrices; Tuning; Matrix decomposition; Vectors; Array signal processing; Standards; Parallel processing; Optimization; Hands; Covariance estimation; autoregressive processes; Gohberg-Semencul; Toeplitz; likelihood estimation; MAXIMUM-LIKELIHOOD-ESTIMATION; AUTOCOVARIANCE MATRICES; INCOMPLETE-DATA; OPTIMAL RATES; BIG DATA; FACTORIZATION; CONVERGENCE; INVERSE;
D O I
10.1109/TSP.2025.3536101
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The use of prior structural knowledge is essential for the estimation of covariance matrices and their inverses when only few data samples are accessible. A well-known example is the knowledge that the covariance matrix is Toeplitz-structured, which occurs when dealing with wide-sense-stationary processes. Exploiting the close relation between autoregressive parameters and inverse covariance matrices, this paper introduces a new class of estimators for Toeplitz-structured covariance matrices and their inverses. To achieve this, we derive novel constraint sets for autoregressive parameters by leveraging their connection to the so-called Gohberg-Semencul decomposition. While these constraint sets guarantee the corresponding inverse covariance matrix to be positive definite and, thus, enable a proper estimation of the covariance matrix by inversion, they also build a means to control the estimator's performance by hyperparameter tuning. The derived constraint sets comprise simple box constraints enabling computationally cheap estimators in closed form. Due to the ensured positive definiteness, the proposed estimators perform well for both the estimation of the covariance matrix and its inverse. Extensive simulation results validate the proposed estimators' efficacy for several standard Toeplitz-structured covariance matrices commonly employed in a wide range of applications.
引用
收藏
页码:858 / 875
页数:18
相关论文
共 50 条
  • [21] Covariance estimation method based on Toeplitz initialization
    Zhang B.
    Luo F.
    Zhang L.-R.
    Huang Q.-D.
    Liu G.-G.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2011, 40 (06): : 865 - 868
  • [22] Efficient nonparametric estimation of Toeplitz covariance matrices
    Klockmann, K.
    Krivobokova, T.
    BIOMETRIKA, 2024, 111 (03) : 843 - 864
  • [23] Toeplitz Structured Covariance Matrix Estimation for Radar Applications
    Du, Xiaolin
    Aubry, Augusto
    De Maio, Antonio
    Cui, Guolong
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 595 - 599
  • [24] EFFICIENT IMPLEMENTATION OF THE EM ALGORITHM FOR TOEPLITZ COVARIANCE ESTIMATION
    FUHRMANN, DR
    TURMON, MJ
    MILLER, MI
    PROCEEDINGS OF THE 22ND CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, VOLS 1 & 2, 1988, : 177 - 177
  • [25] Toeplitz Structured Covariance Matrix Estimation for Radar Applications
    Du, Xiaolin
    Aubry, Augusto
    De Maio, Antonio
    Cui, Guolong
    2020 IEEE 11TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2020,
  • [26] APPLICATION OF TOEPLITZ COVARIANCE ESTIMATION TO ADAPTIVE BEAMFORMING AND DETECTION
    FUHRMANN, DR
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (10) : 2194 - 2198
  • [27] Robust Burg Estimation of stationary autoregressive mixtures covariance
    Decurninge, Alexis
    Barbaresco, Frederic
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING (MAXENT 2014), 2015, 1641 : 387 - 394
  • [28] Estimation of familial correlations under autoregressive circular covariance
    Hartley, AM
    Naik, DN
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2001, 30 (8-9) : 1811 - 1828
  • [29] ESTIMATION OF COVARIANCE PARAMETERS IN KRIGING VIA RESTRICTED MAXIMUM-LIKELIHOOD
    DIETRICH, CR
    OSBORNE, MR
    MATHEMATICAL GEOLOGY, 1991, 23 (01): : 119 - 135
  • [30] ESTIMATION OF LARGE TOEPLITZ COVARIANCE MATRICES AND APPLICATION TO SOURCE DETECTION
    Vinogradova, Julia
    Couillet, Romain
    Hachem, Walid
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 2120 - 2124