Sparsified Random Partial Model Update for Personalized Federated Learning

被引:0
|
作者
Hu, Xinyi [1 ]
Chen, Zihan [2 ]
Feng, Chenyuan [3 ]
Min, Geyong [4 ]
Quek, Tony Q. S. [2 ]
Yang, Howard H. [1 ]
机构
[1] Zhejiang Univ, JU UIUC Inst, Haining 314400, Peoples R China
[2] Singapore Univ Technol & Design, Informat Syst Technol & Design Pillar, Singapore City 487372, Singapore
[3] Eurecom, F-06410 Sophia Antipolis, France
[4] Univ Exeter, Dept Comp Sci, Exeter EX4 4QF, England
基金
国家重点研发计划; 中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Training; Servers; Computational modeling; Data models; Mobile computing; Federated learning; Context modeling; Optimization; Adaptation models; Convergence; Client clustering; convergence rate; personalized federated learning; sparsification;
D O I
10.1109/TMC.2024.3507286
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning (FL) stands as a privacy-preserving machine learning paradigm that enables collaborative training of a global model across multiple clients. However, the practical implementation of FL models often confronts challenges arising from data heterogeneity and limited communication resources. To address the aforementioned issues simultaneously, we develop a Sparsified Random Partial Update framework for personalized Federated Learning (SRP-pFed), which builds upon the foundation of dynamic partial model updates. Specifically, we decouple the local model into personal and shared parts to achieve personalization. For each client, the ratio of its personal part associated with the local model, referred to as the update rate, is regularly renewed over the training procedure via a random walk process endowed with reinforced memory. In each global iteration, clients are clustered into different groups where the ones in the same group share a common update rate. Benefiting from such design, SRP-pFed realizes model personalization while substantially reducing communication costs in the uplink transmissions. We conduct extensive experiments on various training tasks with diverse heterogeneous data settings. The results demonstrate that the SRP-pFed consistently outperforms the state-of-the-art methods in test accuracy and communication efficiency.
引用
收藏
页码:3076 / 3091
页数:16
相关论文
共 50 条
  • [41] ActPerFL: Active Personalized Federated Learning
    Chen, Huili
    Ding, Jie
    Tramel, Eric
    Wu, Shuang
    Sahu, Anit Kumar
    Avestimehr, Salman
    Zhang, Tao
    PROCEEDINGS OF THE FIRST WORKSHOP ON FEDERATED LEARNING FOR NATURAL LANGUAGE PROCESSING (FL4NLP 2022), 2022, : 1 - 5
  • [42] Personalized Federated Learning with Gaussian Processes
    Achituve, Idan
    Shamsian, Aviv
    Navon, Aviv
    Chechik, Gal
    Fetaya, Ethan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [43] Federated Learning for Personalized Humor Recognition
    Guo, Xu
    Yu, Han
    Li, Boyang
    Wang, Hao
    Xing, Pengwei
    Feng, Siwei
    Nie, Zaiqing
    Miao, Chunyan
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (04)
  • [44] Personalized Federated Learning using Hypernetworks
    Shamsian, Aviv
    Navon, Aviv
    Fetaya, Ethan
    Chechik, Gal
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [45] Model Decomposition and Reassembly for Purified Knowledge Transfer in Personalized Federated Learning
    Zhang, Jie
    Guo, Song
    Ma, Xiaosong
    Xu, Wenchao
    Zhou, Qihua
    Guo, Jingcai
    Hong, Zicong
    Shan, Jun
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (01) : 379 - 393
  • [46] MpFedcon: Model-Contrastive Personalized Federated Learning with the Class Center
    LI Xingchen
    FANG Zhijun
    SHI Zhicai
    WuhanUniversityJournalofNaturalSciences, 2022, 27 (06) : 508 - 520
  • [47] Efficient Personalized Federated Learning via Sparse Model-Adaptation
    Chen, Daoyuan
    Yao, Liuyi
    Gao, Dawei
    Ding, Bolin
    Li, Yaliang
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [48] GPFL: Simultaneously Learning Global and Personalized Feature Information for Personalized Federated Learning
    Zhang, Jianqing
    Hua, Yang
    Wang, Hao
    Song, Tao
    Xue, Zhengui
    Ma, Ruhui
    Cao, Jian
    Guan, Haibing
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 5018 - 5028
  • [49] FedPA: An adaptively partial model aggregation strategy in Federated Learning
    Liu, Juncai
    Wang, Jessie Hui
    Rong, Chenghao
    Xu, Yuedong
    Yu, Tao
    Wang, Jilong
    COMPUTER NETWORKS, 2021, 199
  • [50] Federated personalized random forest for human activity recognition
    Liu, Songfeng
    Wang, Jinyan
    Zhang, Wenliang
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (01) : 953 - 971