Sparsified Random Partial Model Update for Personalized Federated Learning

被引:0
|
作者
Hu, Xinyi [1 ]
Chen, Zihan [2 ]
Feng, Chenyuan [3 ]
Min, Geyong [4 ]
Quek, Tony Q. S. [2 ]
Yang, Howard H. [1 ]
机构
[1] Zhejiang Univ, JU UIUC Inst, Haining 314400, Peoples R China
[2] Singapore Univ Technol & Design, Informat Syst Technol & Design Pillar, Singapore City 487372, Singapore
[3] Eurecom, F-06410 Sophia Antipolis, France
[4] Univ Exeter, Dept Comp Sci, Exeter EX4 4QF, England
基金
国家重点研发计划; 中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Training; Servers; Computational modeling; Data models; Mobile computing; Federated learning; Context modeling; Optimization; Adaptation models; Convergence; Client clustering; convergence rate; personalized federated learning; sparsification;
D O I
10.1109/TMC.2024.3507286
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning (FL) stands as a privacy-preserving machine learning paradigm that enables collaborative training of a global model across multiple clients. However, the practical implementation of FL models often confronts challenges arising from data heterogeneity and limited communication resources. To address the aforementioned issues simultaneously, we develop a Sparsified Random Partial Update framework for personalized Federated Learning (SRP-pFed), which builds upon the foundation of dynamic partial model updates. Specifically, we decouple the local model into personal and shared parts to achieve personalization. For each client, the ratio of its personal part associated with the local model, referred to as the update rate, is regularly renewed over the training procedure via a random walk process endowed with reinforced memory. In each global iteration, clients are clustered into different groups where the ones in the same group share a common update rate. Benefiting from such design, SRP-pFed realizes model personalization while substantially reducing communication costs in the uplink transmissions. We conduct extensive experiments on various training tasks with diverse heterogeneous data settings. The results demonstrate that the SRP-pFed consistently outperforms the state-of-the-art methods in test accuracy and communication efficiency.
引用
收藏
页码:3076 / 3091
页数:16
相关论文
共 50 条
  • [1] Beyond Random Selection: A Perspective from Model Inversion in Personalized Federated Learning
    Ma, Zichen
    Lu, Yu
    Li, Wenye
    Cui, Shuguang
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT IV, 2023, 13716 : 572 - 586
  • [2] A lightweight and personalized edge federated learning model
    Peiyan Yuan
    Ling Shi
    Xiaoyan Zhao
    Junna Zhang
    Complex & Intelligent Systems, 2024, 10 : 3577 - 3592
  • [3] A lightweight and personalized edge federated learning model
    Yuan, Peiyan
    Shi, Ling
    Zhao, Xiaoyan
    Zhang, Junna
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (03) : 3577 - 3592
  • [4] Federated Learning with Partial Model Personalization
    Pillutla, Krishna
    Malik, Kshitiz
    Mohamed, Abdelrahman
    Rabbat, Michael
    Sanjabi, Maziar
    Xiao, Lin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [5] GossipFL: A Decentralized Federated Learning Framework With Sparsified and Adaptive Communication
    Tang, Zhenheng
    Shi, Shaohuai
    Li, Bo
    Chu, Xiaowen
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2023, 34 (03) : 909 - 922
  • [6] Model optimization techniques in personalized federated learning: A survey
    Sabah, Fahad
    Chen, Yuwen
    Yang, Zhen
    Azam, Muhammad
    Ahmad, Nadeem
    Sarwar, Raheem
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 243
  • [7] An explainable semi-personalized federated learning model
    Demertzis, Konstantinos
    Iliadis, Lazaros
    Kikiras, Panagiotis
    Pimenidis, Elias
    INTEGRATED COMPUTER-AIDED ENGINEERING, 2022, 29 (04) : 335 - 350
  • [8] Sparse Personalized Federated Learning
    Liu, Xiaofeng
    Li, Yinchuan
    Wang, Qing
    Zhang, Xu
    Shao, Yunfeng
    Geng, Yanhui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 12027 - 12041
  • [9] Benchmark for Personalized Federated Learning
    Matsuda, Koji
    Sasaki, Yuya
    Xiao, Chuan
    Onizuka, Makoto
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2024, 5 : 2 - 13
  • [10] Personalized Subgraph Federated Learning
    Baek, Jinheon
    Jeong, Wonyong
    Jin, Jiongdao
    Yoon, Jaehong
    Hwang, Sung Ju
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202