Effects of the LGS geometry on the Shack-Hartmann wavefront sensor and the Pyramid wavefront sensor

被引:0
|
作者
Oyarzun, F. [1 ]
Heritier, C. T. [1 ]
Chambouleyron, V [2 ]
Fusco, T. [1 ,3 ]
Rouquette, P. [1 ]
Neichel, B. [2 ]
机构
[1] Aix Marseille Univ, LAM, CNES, CNRS, Marseille, France
[2] Univ Calif Santa Cruz, 1156 High St, Santa Cruz, CA 95064 USA
[3] Univ Paris Saclay, ONERA, DOTA, F-91123 Palaiseau, France
来源
ADAPTIVE OPTICS SYSTEMS IX | 2024年 / 13097卷
关键词
Wavefront sensing; Shack-Hartmann; Pyramid wavefront sensor; laser guide star;
D O I
10.1117/12.3018283
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we study the effects of the laser guide star (LGS) on the measurements of both the Shack-Hartmann wavefront sensor (SHWFS) and the Pyramid wavefront sensor (PWFS). We started by describing the LGS geometry and the general effects on each wavefront sensor. Then, we introduced a statistical analysis to predict the centroiding variance for the SHWFS when using an LGS, which we tested for read-out noise and photon noise. We found good agreement between end-to-end simulations and the predictions of the model. We found that the centroiding variance, as expected, follows closely the elongation of the LGS, with the X and Y centroiding evolving each according to the LGS geometry. For the PWFS, we used a convolutional model to compute sensitivity maps. With these maps we could observe that the size of the LGS greately decreases the sensitivity in the low frequencies. We could also obtain a better definition of the size of the LGS, which takes into account the depth of field of the telescope, which can be used to predict the sensitivity of the instrument by computing an equivalent modulation radius equivalent to the LGS size.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] LGS Na-spot elongation and Rayleigh scattering effects on Shack-Hartmann wavefront sensor performances
    Viard, E
    Delplancke, F
    Hubin, N
    Ageorges, N
    ADAPTIVE OPTICS SYSTEMS AND TECHNOLOGY, 1999, 3762 : 8 - 19
  • [32] Shack-Hartmann wavefront sensor for beam quality measurements
    Kudryashov, AV
    Panchenko, VY
    Zavalova, VY
    SEVENTH INTERNATIONAL SYMPOSIUM ON LASER METROLOGY APPLIED TO SCIENCE, INDUSTRY, AND EVERYDAY LIFE, PTS 1 AND 2, 2002, 4900 : 331 - 338
  • [33] Reference-free Shack-Hartmann wavefront sensor
    Zhao, Liping
    Guo, Wenjiang
    Li, Xiang
    Chen, I-Ming
    OPTICS LETTERS, 2011, 36 (15) : 2752 - 2754
  • [34] Shack-Hartmann wavefront sensor based on Kalman filter
    Gu, De
    Liu, Xing
    OPTICAL ENGINEERING, 2022, 61 (09)
  • [35] Detection of phase singularities with a Shack-Hartmann wavefront sensor
    Chen, Mingzhou
    Roux, Filippus S.
    Olivier, Jan C.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (07) : 1994 - 2002
  • [36] Accounting for focal shift in the Shack-Hartmann wavefront sensor
    Akondi, Vyas
    Dubra, Alfredo
    OPTICS LETTERS, 2019, 44 (17) : 4151 - 4154
  • [37] Atmospheric turbulence profiling with a Shack-Hartmann wavefront sensor
    Ogane, Hajime
    Akiyama, Masayuki
    Oya, Shin
    Ono, Yoshito H.
    ADAPTIVE OPTICS SYSTEMS VII, 2020, 11448
  • [38] Adaptive centroid optimization for Shack-Hartmann wavefront sensor
    Gan, Jinrui
    Jing, Wenbo
    Wang, Xiaoman
    2013 INTERNATIONAL CONFERENCE ON OPTICAL INSTRUMENTS AND TECHNOLOGY: OPTOELECTRONIC IMAGING AND PROCESSING TECHNOLOGY, 2013, 9045
  • [39] Shack-Hartmann wavefront sensor with large dynamic range
    Xia, Mingliang
    Li, Chao
    Hu, Lifa
    Cao, Zhaoliang
    Mu, Quanquan
    Li Xuan
    JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (02)
  • [40] Shack-Hartmann wavefront sensor for laser beam analyses
    Zavalova, VY
    Kudryashova, AV
    HIGH-RESOLUTION WAVEFRONT CONTROL: METHODS, DEVICES, AND APPLICATIONS III, 2002, 4493 : 277 - 284