Homogeneous Riemannian Structures in Thurston Geometries and Contact Riemannian Geometries

被引:0
|
作者
Inoguchi, Jun-ichi [1 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
来源
关键词
Homogeneous structures; Thurston geometry; Sasakian manifolds; Ambrose-Singer connections; LEFT-INVARIANT METRICS; LOOP GROUP METHOD; GRASSMANN GEOMETRY; MINIMAL-SURFACES; MAGNETIC CURVES; LIE-GROUPS; MANIFOLDS; CLASSIFICATION; CONNECTIONS; SPACES;
D O I
10.36890/IEJG.1464086
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give explicit parametrizations for all the homogeneous Riemannian structures on model spaces of Thurston geometry. As an application, we give all the homogeneous contac Riemannian structures on 3-dimensional Sasakian space forms.
引用
收藏
页码:559 / 659
页数:101
相关论文
共 50 条
  • [41] NON-RIEMANNIAN GEOMETRIES AND HIGHER-DIMENSIONAL THEORIES OF SPACETIME
    Romero, C.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2009, 24 (8-9): : 1457 - 1464
  • [42] AN INVERSE PROBLEM FOR A SEMI-LINEAR ELLIPTIC EQUATION IN RIEMANNIAN GEOMETRIES
    Department of Mathematics, University College London, London
    WC1E 6BT, United Kingdom
    arXiv, 2019,
  • [43] Lyapunov Functions for Time-Scale Dynamics on Riemannian Geometries of the Simplex
    Harper, Marc
    Fryer, Dashiell
    DYNAMIC GAMES AND APPLICATIONS, 2015, 5 (03) : 318 - 333
  • [44] Energy-momentum and equivalence principle in non-Riemannian geometries
    Castagnino, M
    Levinas, ML
    Umerez, N
    GENERAL RELATIVITY AND GRAVITATION, 1997, 29 (06) : 691 - 703
  • [45] An inverse problem for a semi-linear elliptic equation in Riemannian geometries
    Feizmohammadi, Ali
    Oksanen, Lauri
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (06) : 4683 - 4719
  • [46] Gravitational waves from Thurston geometries
    Flores-Alfonso, Daniel
    Lopez-Monsalvo, Cesar S.
    Maceda, Marco
    PHYSICAL REVIEW D, 2024, 110 (02)
  • [47] Cosmological constraints on anisotropic Thurston geometries
    Smith, Ananda F.
    Copi, Craig J.
    Starkman, Glenn D.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2025, (01):
  • [48] A note on biharmonic functions on the Thurston geometries
    Gudmundsson, Sigmundur
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 131 : 114 - 121
  • [49] Classical Notions and Problems in Thurston Geometries
    Szirmai, Jeno
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (02): : 608 - 643
  • [50] Ray-Marching Thurston Geometries
    Coulon, Remi
    Matsumoto, Elisabetta A.
    Segerman, Henry
    Trettel, Steve J.
    EXPERIMENTAL MATHEMATICS, 2022, 31 (04) : 1197 - 1277