Homogeneous Riemannian Structures in Thurston Geometries and Contact Riemannian Geometries

被引:0
|
作者
Inoguchi, Jun-ichi [1 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
来源
关键词
Homogeneous structures; Thurston geometry; Sasakian manifolds; Ambrose-Singer connections; LEFT-INVARIANT METRICS; LOOP GROUP METHOD; GRASSMANN GEOMETRY; MINIMAL-SURFACES; MAGNETIC CURVES; LIE-GROUPS; MANIFOLDS; CLASSIFICATION; CONNECTIONS; SPACES;
D O I
10.36890/IEJG.1464086
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give explicit parametrizations for all the homogeneous Riemannian structures on model spaces of Thurston geometry. As an application, we give all the homogeneous contac Riemannian structures on 3-dimensional Sasakian space forms.
引用
收藏
页码:559 / 659
页数:101
相关论文
共 50 条
  • [21] Non-Riemannian and fractal geometries of fracturing in geomaterials
    Nagahama, H
    GEOLOGISCHE RUNDSCHAU, 1996, 85 (01): : 96 - 102
  • [22] Extended schouten classification for non-Riemannian geometries
    Casanova, Sabrina
    Lecian, Orchidea Maria
    Montani, Giovanni
    Ruffini, Remo
    Zalaletdinov, Roustam
    MODERN PHYSICS LETTERS A, 2008, 23 (01) : 17 - 23
  • [24] Semiclassical quantum gravity: statistics of combinatorial Riemannian geometries
    Bombelli, L
    Corichi, A
    Winkler, O
    ANNALEN DER PHYSIK, 2005, 14 (08) : 499 - 519
  • [25] Homogeneous Riemannian structures in dimension three
    Calvino-Louzao, E.
    Ferreiro-Subrido, M.
    Garcia-Rio, E.
    Vazquez-Lorenzo, R.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (02)
  • [26] From the Jordan Product to Riemannian Geometries on Classical and Quantum States
    Ciaglia, Florio M.
    Jost, Juergen
    Schwachhoefer, Lorenz
    ENTROPY, 2020, 22 (06)
  • [27] Post-Riemannian approach for the symplectic and elliptic geometries of gravity
    Cartas-Fuentevilla, R.
    Solano-Altamirano, J. M.
    Enriquez-Silverio, P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (19)
  • [28] ENTROPY PRODUCTION IN STOCHASTIC RIEMANNIAN GEOMETRIES WITH APPLICATIONS TO CHEMICAL ECOLOGY
    ANTONELLI, PL
    SEYMOUR, RM
    ADVANCES IN APPLIED MATHEMATICS, 1987, 8 (03) : 254 - 280
  • [29] Homogeneous Riemannian structures in dimension three
    E. Calviño-Louzao
    M. Ferreiro-Subrido
    E. García-Río
    R. Vázquez-Lorenzo
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [30] Pseudo-Riemannian Homogeneous Structures
    Cap, A.
    MONATSHEFTE FUR MATHEMATIK, 2022, 199 (04): : 930 - 931