Tucker Decomposition with Frequency Attention for Temporal Knowledge Graph Completion

被引:0
|
作者
Xiao, Likang [1 ,3 ]
Zhang, Richong [1 ]
Chen, Zijie [2 ]
Chen, Junfan [1 ]
机构
[1] Beihang Univ, Sch Comp Sci & Engn, SKLSDE, Beijing, Peoples R China
[2] Univ Toronto, Sch Elect & Comp Engn, Toronto, ON, Canada
[3] Beihang Univ, Shen Yuan Honors Coll, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Temporal Knowledge Graph Completion aims to complete missing entities or relations under temporal constraints. Previous tensor decomposition-based models for TKGC only independently consider the combination of one single relation with one single timestamp, ignoring the global nature of the embedding. We propose a Frequency Attention (FA) model to capture the global temporal dependencies between one relation and the entire timestamp. Specifically, we use Discrete Cosine Transform (DCT) to capture the frequency of the timestamp embedding and further compute the frequency attention weight to scale embedding. Meanwhile, the previous temporal tucker decomposition method uses a simple norm regularization to constrain the core tensor, which limits the optimization performance. Thus, we propose Orthogonal Regularization (OR) variants for the core tensor, which can limit the non-superdiagonal elements of the 3-rd core tensor. Experiments on three standard TKGC datasets demonstrate that our method outperforms the state-of-the-art results on several metrics. The results suggest that the direct-current component is not the best feature for TKG representation learning. Additional analysis shows the effectiveness of our FA and OR models, even with smaller embedding dimensions.
引用
收藏
页码:7286 / 7300
页数:15
相关论文
共 50 条
  • [31] Knowledge Graph Completion via Complete Attention between Knowledge Graph and Entity Descriptions
    Zhao, Minjun
    Zhao, Yawei
    Xu, Bing
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2019), 2019,
  • [32] Leveraging semantic property for temporal knowledge graph completion
    Li, Mingda
    Sun, Zhengya
    Zhang, Wensheng
    Liu, Wei
    APPLIED INTELLIGENCE, 2023, 53 (08) : 9247 - 9260
  • [33] Leveraging semantic property for temporal knowledge graph completion
    Mingda Li
    Zhengya Sun
    Wensheng Zhang
    Wei Liu
    Applied Intelligence, 2023, 53 : 9247 - 9260
  • [34] An Improvement of Diachronic Embedding for Temporal Knowledge Graph Completion
    Thuy-Anh Nguyen Thi
    Viet-Phuong Ta
    Xuan Hieu Phan
    Quang Thuy Ha
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2023, PT II, 2023, 13996 : 111 - 120
  • [35] Learning Sequence Encoders for Temporal Knowledge Graph Completion
    Garcia-Duran, Alberto
    Dumancic, Sebastijan
    Niepert, Mathias
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 4816 - 4821
  • [36] Dynamic knowledge graph completion of temporal aware combination
    Li, Zhongliang
    Chen, Qi
    Shi, Lin
    Yang, Chao
    Zou, Xianming
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (08): : 1738 - 1747
  • [37] Focus on Inherent Attributes for Temporal Knowledge Graph Completion
    Chen, Kai
    Li, Chenchen
    Li, Aiping
    Gao, Jingsheng
    Ma, Sixia
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [38] Completion of Temporal Knowledge Graph for Historical Contrastive Learning
    Xu, Zhihong
    Qiu, Penglin
    Wang, Liqin
    Dong, Yongfeng
    Computer Engineering and Applications, 2024, 60 (22) : 154 - 161
  • [39] Specific Time Embedding for Temporal Knowledge Graph Completion
    Ni, Runyu
    Ma, Zhonggui
    Yu, Kaihang
    Xu, Xiaohan
    PROCEEDINGS OF 2020 IEEE 19TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC 2020), 2020, : 105 - 110
  • [40] Temporal Knowledge Graph Completion Using Box Embeddings
    Messner, Johannes
    Abboud, Ralph
    Ceylan, Ismail Ilkan
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 7779 - 7787