Tucker Decomposition with Frequency Attention for Temporal Knowledge Graph Completion

被引:0
|
作者
Xiao, Likang [1 ,3 ]
Zhang, Richong [1 ]
Chen, Zijie [2 ]
Chen, Junfan [1 ]
机构
[1] Beihang Univ, Sch Comp Sci & Engn, SKLSDE, Beijing, Peoples R China
[2] Univ Toronto, Sch Elect & Comp Engn, Toronto, ON, Canada
[3] Beihang Univ, Shen Yuan Honors Coll, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Temporal Knowledge Graph Completion aims to complete missing entities or relations under temporal constraints. Previous tensor decomposition-based models for TKGC only independently consider the combination of one single relation with one single timestamp, ignoring the global nature of the embedding. We propose a Frequency Attention (FA) model to capture the global temporal dependencies between one relation and the entire timestamp. Specifically, we use Discrete Cosine Transform (DCT) to capture the frequency of the timestamp embedding and further compute the frequency attention weight to scale embedding. Meanwhile, the previous temporal tucker decomposition method uses a simple norm regularization to constrain the core tensor, which limits the optimization performance. Thus, we propose Orthogonal Regularization (OR) variants for the core tensor, which can limit the non-superdiagonal elements of the 3-rd core tensor. Experiments on three standard TKGC datasets demonstrate that our method outperforms the state-of-the-art results on several metrics. The results suggest that the direct-current component is not the best feature for TKG representation learning. Additional analysis shows the effectiveness of our FA and OR models, even with smaller embedding dimensions.
引用
收藏
页码:7286 / 7300
页数:15
相关论文
共 50 条
  • [21] Diachronic Embedding for Temporal Knowledge Graph Completion
    Goel, Rishab
    Kazemi, Seyed Mehran
    Brubaker, Marcus
    Poupart, Pascal
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 3988 - 3995
  • [22] A Simple But Powerful Graph Encoder for Temporal Knowledge Graph Completion
    Ding, Zifeng
    Ma, Yunpu
    He, Bailan
    Wu, Jingpei
    Han, Zhen
    Tresp, Volker
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 3, INTELLISYS 2023, 2024, 824 : 729 - 747
  • [23] Twin Graph Attention Network with Evolution Pattern Learner for Few-Shot Temporal Knowledge Graph Completion
    Liang, Yi
    Zhao, Shuai
    Cheng, Bo
    Yang, Hao
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2023, 2023, 14117 : 234 - 246
  • [24] TeMP: Temporal Message Passing for Temporal Knowledge Graph Completion
    Wu, Jiapeng
    Cao, Meng
    Cheung, Jackie Chi Kit
    Hamilton, William L.
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 5730 - 5746
  • [25] Learnable convolutional attention network for knowledge graph completion
    Shang, Bin
    Zhao, Yinliang
    Liu, Jun
    KNOWLEDGE-BASED SYSTEMS, 2024, 285
  • [26] Graph attention network with dynamic representation of relations for knowledge graph completion
    Zhang, Xin
    Zhang, Chunxia
    Guo, Jingtao
    Peng, Cheng
    Niu, Zhendong
    Wu, Xindong
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 219
  • [27] Multi-relational graph attention networks for knowledge graph completion
    Li, Zhifei
    Zhao, Yue
    Zhang, Yan
    Zhang, Zhaoli
    KNOWLEDGE-BASED SYSTEMS, 2022, 251
  • [28] RAGAT: Relation Aware Graph Attention Network for Knowledge Graph Completion
    Liu, Xiyang
    Tan, Huobin
    Chen, Qinghong
    Lin, Guangyan
    IEEE ACCESS, 2021, 9 : 20840 - 20849
  • [29] Relational Graph Neural Network with Hierarchical Attention for Knowledge Graph Completion
    Zhang, Zhao
    Zhuang, Fuzhen
    Zhu, Hengshu
    Shi, Zhiping
    Xiong, Hui
    He, Qing
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9612 - 9619
  • [30] Graph Attention Networks With Local Structure Awareness for Knowledge Graph Completion
    Ji, Kexi
    Hui, Bei
    Luo, Guangchun
    IEEE ACCESS, 2020, 8 : 224860 - 224870