Tucker Decomposition with Frequency Attention for Temporal Knowledge Graph Completion

被引:0
|
作者
Xiao, Likang [1 ,3 ]
Zhang, Richong [1 ]
Chen, Zijie [2 ]
Chen, Junfan [1 ]
机构
[1] Beihang Univ, Sch Comp Sci & Engn, SKLSDE, Beijing, Peoples R China
[2] Univ Toronto, Sch Elect & Comp Engn, Toronto, ON, Canada
[3] Beihang Univ, Shen Yuan Honors Coll, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Temporal Knowledge Graph Completion aims to complete missing entities or relations under temporal constraints. Previous tensor decomposition-based models for TKGC only independently consider the combination of one single relation with one single timestamp, ignoring the global nature of the embedding. We propose a Frequency Attention (FA) model to capture the global temporal dependencies between one relation and the entire timestamp. Specifically, we use Discrete Cosine Transform (DCT) to capture the frequency of the timestamp embedding and further compute the frequency attention weight to scale embedding. Meanwhile, the previous temporal tucker decomposition method uses a simple norm regularization to constrain the core tensor, which limits the optimization performance. Thus, we propose Orthogonal Regularization (OR) variants for the core tensor, which can limit the non-superdiagonal elements of the 3-rd core tensor. Experiments on three standard TKGC datasets demonstrate that our method outperforms the state-of-the-art results on several metrics. The results suggest that the direct-current component is not the best feature for TKG representation learning. Additional analysis shows the effectiveness of our FA and OR models, even with smaller embedding dimensions.
引用
收藏
页码:7286 / 7300
页数:15
相关论文
共 50 条
  • [1] Tucker decomposition-based temporal knowledge graph completion
    Shao, Pengpeng
    Zhang, Dawei
    Yang, Guohua
    Tao, Jianhua
    Che, Feihu
    Liu, Tong
    KNOWLEDGE-BASED SYSTEMS, 2022, 238
  • [2] Dynamic Embedding Graph Attention Networks for Temporal Knowledge Graph Completion
    Wang, Jingqi
    Zhu, Cui
    Zhu, Wenjun
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2022, 13368 : 722 - 734
  • [3] Spatial-Temporal Attention Network for Temporal Knowledge Graph Completion
    Zhang, Jiasheng
    Liang, Shuang
    Deng, Zhiyi
    Shao, Jie
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT I, 2021, 12681 : 207 - 223
  • [4] Incorporating Relational Awareness and Temporal Attention for Temporal Knowledge Graph Completion
    Xu, Zhihong
    Mao, Chen
    Wang, Liqin
    Dong, Yongfeng
    Computer Engineering and Applications, 2023, 59 (17) : 266 - 274
  • [5] TuckER: Tensor Factorization for Knowledge Graph Completion
    Balazevic, Ivana
    Allen, Carl
    Hospedales, Timothy M.
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 5185 - 5194
  • [6] RoAN: A relation-oriented attention network for temporal knowledge graph completion
    Bai, Luyi
    Ma, Xiangnan
    Meng, Xiangxi
    Ren, Xin
    Ke, Yujing
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [7] NePTuNe: Neural Powered Tucker Network for Knowledge Graph Completion
    Sonkar, Shashank
    Katiyar, Arzoo
    Baraniuk, Richard
    PROCEEDINGS OF THE 10TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE GRAPHS (IJCKG 2021), 2021, : 177 - 180
  • [8] Joint framework for tensor decomposition-based temporal knowledge graph completion
    Zhang, Fu
    Chen, Hongzhi
    Shi, Yuzhe
    Cheng, Jingwei
    Lin, Jinghao
    INFORMATION SCIENCES, 2024, 654
  • [9] Temporal Knowledge Graph Completion: A Survey
    Cai, Borui
    Xiang, Yong
    Gao, Longxiang
    Zhang, He
    Li, Yunfeng
    Li, Jianxin
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 6545 - 6553
  • [10] TBDRI: block decomposition based on relational interaction for temporal knowledge graph completion
    Yu, Mei
    Guo, Jiujiang
    Yu, Jian
    Xu, Tianyi
    Zhao, Mankun
    Liu, Hongwei
    Li, Xuewei
    Yu, Ruiguo
    APPLIED INTELLIGENCE, 2023, 53 (05) : 5072 - 5084