The non-orientable 4-genus of 11 crossing non-alternating knots

被引:0
|
作者
Fairchild, Megan [1 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70802 USA
关键词
Topology; knot theory; non-orientable; 4-genus; crosscap number; prime knots; non-oriented band move; slice knots; double branched cover; arf invariant; knot signature Goeritz matrix; checkerboard coloring; non-alternating knots; linking form; NUMBER;
D O I
10.1142/S0218216524500500
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The non-orientable 4-genus of a knot K in S3 is defined to be the minimum first Betti number of a non-orientable surface F smoothly embedded in B4 so that K bounds F. We will survey the tools used to compute the non-orientable 4-genus, and use various techniques to calculate this invariant for non-alternating 11 crossing knots. We will also view obstructions to a knot bounding a M & ouml;bius band given by the double branched cover of S3 branched over K.
引用
收藏
页数:26
相关论文
共 50 条