ON THE TOPOLOGICAL 4-GENUS OF TORUS KNOTS

被引:10
|
作者
Baader, S. [1 ]
Feller, P. [2 ,3 ]
Lewark, L. [1 ]
Liechti, L. [1 ]
机构
[1] Univ Bern, Math Inst, Sidlerstr 5, CH-3012 Bern, Switzerland
[2] Boston Coll, Dept Math, Maloney Hall, Chestnut Hill, MA 02467 USA
[3] Swiss Fed Inst Technol, Ramistr 101, CH-8092 Zurich, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
LOCALLY-FLAT SURFACES; PROJECTIVE PLANE; SIGNATURE; GENUS; LINKS;
D O I
10.1090/tran/7051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the topological locally flat slice genus of large torus knots takes up less than three quarters of the ordinary genus. As an application, we derive the best possible linear estimate of the topological slice genus for torus knots with non-maximal signature invariant.
引用
收藏
页码:2639 / 2656
页数:18
相关论文
共 50 条
  • [2] The nonorientable 4-genus of knots
    Gilmer, Patrick M.
    Livingston, Charles
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 84 : 559 - 577
  • [3] The stable 4-genus of knots
    Livingston, Charles
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (04): : 2191 - 2202
  • [4] Amphichiral knots with large 4-genus
    Miller, A. N.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (02) : 624 - 634
  • [5] THE STABLE 4-GENUS OF ALTERNATING KNOTS
    Baader, Sebastian
    Lewark, Lukas
    ASIAN JOURNAL OF MATHEMATICS, 2017, 21 (06) : 1183 - 1190
  • [6] On the nonorientable 4-genus of double twist knots
    Hoste, Jim
    Shanahan, Patrick D.
    Van Cott, Cornelia A.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2023,
  • [7] A lower bound on the stable 4-genus of knots
    Iltgen, Damian
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2022, 22 (05): : 2239 - 2265
  • [8] Relative symplectic caps, 4-genus and fibered knots
    Gadgil, Siddhartha
    Kulkarni, Dheeraj
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2016, 126 (02): : 261 - 275
  • [9] The nonorientable 4-genus for knots with 8 or 9 crossings
    Jabuka, Stanislav
    Kelly, Tynan
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (03): : 1823 - 1856