Light-induced quantum anomalous Hall effect in kagome noncollinear antiferromagnets

被引:0
|
作者
Bai, Yingxi [1 ]
Zou, Xiaorong [1 ]
Chen, Zhiqi [1 ]
Li, Runhan [1 ]
Yin, Hang [1 ]
Dai, Ying [1 ]
Huang, Baibiao [1 ]
Niu, Chengwang [1 ]
机构
[1] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
关键词
D O I
10.1103/PhysRevB.111.054407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We put forward that circularly polarized light is a versatile way to manipulate the quantum anomalous Hall effect (QAHE) in kagome noncollinear antiferromagnets. Employing model analysis and first-principles calculations, we investigate the origin of nontrivial insulator and nonvanishing anomalous Hall conductivity, where a topological phase transition from nontrivial semimetals to Chern insulators emerges accompanied by the breaking of mirror symmetry M and combined symmetry C6zT. In particular, both the organic and inorganic material candidates, i.e., Cr3(HAB)2 and Cr3Te2 monolayers, are proposed to realize the Floquet-engineered QAHE, confirmed via nonzero Chern numbers C = +/- 1 and the emergence of one chiral edge state in the nanoribbons. Moreover, a tight-binding model is constructed to demonstrate the generality and feasibility of attaining Floquet-engineered QAHE in kagome noncollinear antiferromagnets. These findings hold substantial significance for the combination of QAHE, Floquet engineering, and noncollinear antiferromagnets with high possibility of innovative applications in topological spintronics.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Non-collinear antiferromagnets and the anomalous Hall effect
    Kuebler, J.
    Felser, C.
    EPL, 2014, 108 (06)
  • [32] Cluster multipole theory for anomalous Hall effect in antiferromagnets
    Suzuki, M. -T.
    Koretsune, T.
    Ochi, M.
    Arita, R.
    PHYSICAL REVIEW B, 2017, 95 (09)
  • [33] Noncollinear ferromagnetic Weyl semimetal with anisotropic anomalous Hall effect
    Yang, Hung-Yu
    Singh, Bahadur
    Gaudet, Jonathan
    Lu, Baozhu
    Huang, Cheng-Yi
    Chiu, Wei-Chi
    Huang, Shin-Ming
    Wang, Baokai
    Bahrami, Faranak
    Xu, Bochao
    Franklin, Jacob
    Sochnikov, Ilya
    Graf, David E.
    Xu, Guangyong
    Zhao, Yang
    Hoffman, Christina M.
    Lin, Hsin
    Torchinsky, Darius H.
    Broholm, Collin L.
    Bansil, Arun
    Tafti, Fazel
    PHYSICAL REVIEW B, 2021, 103 (11)
  • [34] Quantum anomalous Hall effect in M2X3 honeycomb Kagome lattice
    Zhang, Bingwen
    Deng, Fenglin
    Chen, Xuejiao
    Lv, Xiaodong
    Wang, Jun
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (47)
  • [35] Prediction of coexistence of anomalous valley Hall and quantum anomalous Hall effects in breathing kagome-honeycomb lattices
    Liu, Lei
    Zhao, Bao
    Zhang, Jiayong
    Bao, Hairui
    Huan, Hao
    Xue, Yang
    Li, Yue
    Yang, Zhongqin
    PHYSICAL REVIEW B, 2021, 104 (24)
  • [36] Quantum anomalous Hall effect
    He, Ke
    Wang, Yayu
    Xue, Qi-Kun
    NATIONAL SCIENCE REVIEW, 2014, 1 (01) : 38 - 48
  • [37] Tunable Quantum Anomalous Hall Effect via Crystal Order in Spin-Splitting Antiferromagnets
    Zhu, Wenxuan
    Bai, Hua
    Han, Lei
    Pan, Feng
    Song, Cheng
    NANO LETTERS, 2025, 25 (14) : 5672 - 5678
  • [38] Quantum anomalous Hall effect
    Ke He
    Yayu Wang
    Qi-Kun Xuea
    National Science Review, 2014, 1 (01) : 38 - 48
  • [39] Anomalous Hall effects of light and chiral edge modes on the Kagome lattice
    Petrescu, Alexandru
    Houck, Andrew A.
    Le Hur, Karyn
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [40] Magnon thermal Hall effect in kagome antiferromagnets with Dzyaloshinskii-Moriya interactions
    Laurell, Pontus
    Fiete, Gregory A.
    PHYSICAL REVIEW B, 2018, 98 (09)