Silica as a two-dimensional material for nano-electronics

被引:0
|
作者
Ferry, David K. [1 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
关键词
ultra-thin layer; electron mobility; conductivity; field-effect transistor; nanosheet transistor; POLAR PHONON-SCATTERING; ROOM-TEMPERATURE; DIFFUSION; CHARGE; TRANSPORT; BREAKDOWN; MOBILITY; DIOXIDE; SIO2; NANOTECHNOLOGY;
D O I
10.1088/1361-6641/adaa97
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Modern microelectronics has transitioned from planar metal-oxide-semiconductor transistors to finFETs to nanowire FETs, and most recently to nanosheet (NS) FETs, in which the channel is composed of a group of gate-all-around thin layers of silicon or a substitute material. It has been suggested that some two-dimensional materials may be used to replace the silicon in these NS FETs. While such two-dimensional materials have been studied over the past couple of decades, they have questionable properties for this application. In fact, it is pointed out here that silica itself may be a more suitable material for use in NS transistors. The properties of silica are discussed, and comparisons with other materials are given. It is shown that silica has a number of advantageous properties for use as a NS, provided that more research can establish viable methods of controlling required dopants for active layers.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] 3-D silicon technology for nano-electronics
    Kim, Kinam
    Jung, Soon-Moon
    IEEE NMDC 2006: IEEE NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE 2006, PROCEEDINGS, 2006, : 84 - 85
  • [32] CONAN - A design exploration framework for reliable nano-electronics architectures
    Cotofana, S
    Schmid, A
    Leblebici, Y
    Ionescu, A
    Soffke, O
    Zipf, P
    Glesner, M
    Rubio, A
    16TH INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURE AND PROCESSORS, PROCEEDINGS, 2005, : 260 - 267
  • [33] Radiation Resilient Two-Dimensional Electronics
    Schranghamer, Thomas F.
    Pannone, Andrew
    Ravichandran, Harikrishnan
    Stepanoff, Sergei P.
    Trainor, Nicholas
    Redwing, Joan M.
    Wolfe, Douglas E.
    Das, Saptarshi
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (22) : 26946 - 26959
  • [34] Two-dimensional molecular electronics circuits
    Luo, Y
    Collier, CP
    Jeppesen, JO
    Nielsen, KA
    DeIonno, E
    Ho, G
    Perkins, J
    Tseng, HR
    Yamamoto, T
    Stoddart, JF
    Heath, JR
    CHEMPHYSCHEM, 2002, 3 (06) : 519 - +
  • [35] Two-dimensional molecular electronics circuits
    Luo, Yi
    Collier, C. Patrick
    Jeppesen, Jan O.
    Nielsen, Kent A.
    DeIonno, Erica
    Ho, Greg
    Perkins, Julie
    Tseng, Hsian-Rong
    Yamamoto, Tohru
    Stoddart, J. Fraser
    Heath, James R.
    2002, Wiley-VCH Verlag (03)
  • [36] Two-Dimensional Electronics Prospects and Challenges
    Schwierz, Frank
    ELECTRONICS, 2016, 5 (02)
  • [37] Analogue two-dimensional semiconductor electronics
    Polyushkin, Dmitry K.
    Wachter, Stefan
    Mennel, Lukas
    Paur, Matthias
    Paliy, Maksym
    Iannaccone, Giuseppe
    Fiori, Gianluca
    Neumaier, Daniel
    Canto, Barbara
    Mueller, Thomas
    NATURE ELECTRONICS, 2020, 3 (08) : 486 - 491
  • [38] Analogue two-dimensional semiconductor electronics
    Dmitry K. Polyushkin
    Stefan Wachter
    Lukas Mennel
    Matthias Paur
    Maksym Paliy
    Giuseppe Iannaccone
    Gianluca Fiori
    Daniel Neumaier
    Barbara Canto
    Thomas Mueller
    Nature Electronics, 2020, 3 : 486 - 491
  • [39] Electronics based on two-dimensional materials
    Gianluca Fiori
    Francesco Bonaccorso
    Giuseppe Iannaccone
    Tomás Palacios
    Daniel Neumaier
    Alan Seabaugh
    Sanjay K. Banerjee
    Luigi Colombo
    Nature Nanotechnology, 2014, 9 : 768 - 779
  • [40] Hybrid dielectrics for two-dimensional electronics
    Yang Liu
    James C. Hone
    Nature Materials, 2023, 22 : 1059 - 1060