Analysis of single and double effect LiBr-H2O absorption cooling systems to meet the cooling requirements of surface ships

被引:0
|
作者
Ozturk, Omer [1 ]
Kandemir, Ilyas [2 ]
机构
[1] Gebze Tech Univ, Mech Engn Dept, Kocaeli, Turkiye
[2] Gebze Tech Univ, Aeronaut Engn Dept, Kocaeli, Turkiye
关键词
Single effect LiBr-H2O absorption cooling system; Double effect LiBr-H2O absorption cooling system; Waste heat recovery; Ship energy system; Ship HVAC system; Energy efficiency; THERMODYNAMIC ANALYSIS; THERMAL MANAGEMENT; ENERGY; SIMULATION; HEAT; EXERGY; DESIGN;
D O I
10.1016/j.applthermaleng.2024.125206
中图分类号
O414.1 [热力学];
学科分类号
摘要
As technology advances, the cooling loads of future surface ship electronic systems are increasing. Increasing cooling loads and the need for efficient energy use on board necessitate studies on cooling systems. This study demonstrates the feasibility of using single and double-effect LiBr-H2O absorption cooling systems on surface ships facing increasing cooling demands. The proposed systems utilize exhaust waste heat from gas turbines and diesel generators as a heat source. In the study, the combustion analysis of the exhaust gases is performed, and the waste heat that can be used for the absorption system generator supply is calculated for each speed stage for the gas turbine and each load condition for the diesel generator. Thermodynamic analysis of the system is conducted based on the surface ship's seasonal air and sea temperatures and average port and sailing hours over the ship's life cycle. Under these conditions, the energy obtained from the absorption cooling system on the simulated surface ship is used to reduce the ship generator load. Using the single effect LiBr-H2O absorption cooling system designed for the diesel generator reduces the load on the diesel generator, saving 20.2 tons in port, 7.4 tons underway, and 27.6 tons per year (1.83 %). The double effect LiBr-H2O absorption cooling system designed for the gas turbine saves 104.1 tons (6.92 %) of fuel for the diesel generator and 131.7 tons per year (8.75 %) for all systems. It was discovered that integrating the two systems on board can reduce 417.9 tons of CO2 emissions. It is also observed that an average of 894.1 kW of excess cooling power can be obtained, sufficient to meet the future cooling needs of the ship. This study confirms that the proposed cooling system is feasible and effective in meeting surface ships' increasing cooling demands.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Analysis of the minimum activation temperature of LiBr-H2O absorption chiller
    Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
    Kung Cheng Je Wu Li Hsueh Pao, 2013, 11 (2020-2024):
  • [32] Performance analysis of a biomass gasification-based CCHP system integrated with variable-effect LiBr-H2O absorption cooling and desiccant dehumidification
    Li, Xian
    Kan, Xiang
    Sun, Xiangyu
    Zhao, Yao
    Ge, Tianshu
    Dai, Yanjun
    Wang, Chi-Hwa
    ENERGY, 2019, 176 : 961 - 979
  • [33] A mathematical model with experiments of single effect absorption heat pump using LiBr-H2O
    Sun, Jian
    Fu, Lin
    Zhang, Shigang
    Hou, Wei
    APPLIED THERMAL ENGINEERING, 2010, 30 (17-18) : 2753 - 2762
  • [34] ENERGY AND EXERGY ANALYSES OF A LIBR-H2O SOLAR ABSORPTION COOLING SYSTEM: A CASE STUDY FOR BRAZILIAN PUBLIC BUILDINGS
    Pinto, Gabriel
    de Souza, Tulio
    Coronado, Christian
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2022, 21 (06): : 939 - 950
  • [35] Performance analysis of solar air cooled double effect LiBr/H2O absorption cooling system in subtropical city
    Li, Zeyu
    Ye, Xiangyang
    Liu, Jinping
    ENERGY CONVERSION AND MANAGEMENT, 2014, 85 : 302 - 312
  • [36] Modeling and Active Disturbance Rejection Control of a Single Effect LiBr-H2O Absorption Chiller
    He, Ting
    Li, Donghai
    Wu, Zhenlong
    Xue, Yali
    Yang, Yuxin
    2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 2726 - 2731
  • [37] Experimental characterization of a single stage LiBr-H2O absorption test rig
    Gutierrez, G.
    Venegas, M.
    Rodriguez Aumente, P.
    Izquierdo Millan, M.
    Lecuona Neumann, A.
    ECOS 2006: PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, VOLS 1-3, 2006, : 1311 - +
  • [38] Stationary analysis of a solar LiBr-H2O absorption refrigeration system
    Monne, C.
    Alonso, S.
    Palacin, F.
    Guallar, J.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2011, 34 (02): : 518 - 526
  • [39] LiBr-H2O absorption heat pump for single-effect evaporation desalination process
    Mandani, F
    Ettouney, H
    El-Dessouky, H
    DESALINATION, 2000, 128 (02) : 161 - 176
  • [40] Thermo-economic optimization and comparison study of LiBr-H2O and LiCl-H2O working pair in absorption cooling systems based on genetic algorithm
    Bhowmick, Amit
    Kundu, Balaram
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (03) : 3938 - 3954