Analysis of single and double effect LiBr-H2O absorption cooling systems to meet the cooling requirements of surface ships

被引:0
|
作者
Ozturk, Omer [1 ]
Kandemir, Ilyas [2 ]
机构
[1] Gebze Tech Univ, Mech Engn Dept, Kocaeli, Turkiye
[2] Gebze Tech Univ, Aeronaut Engn Dept, Kocaeli, Turkiye
关键词
Single effect LiBr-H2O absorption cooling system; Double effect LiBr-H2O absorption cooling system; Waste heat recovery; Ship energy system; Ship HVAC system; Energy efficiency; THERMODYNAMIC ANALYSIS; THERMAL MANAGEMENT; ENERGY; SIMULATION; HEAT; EXERGY; DESIGN;
D O I
10.1016/j.applthermaleng.2024.125206
中图分类号
O414.1 [热力学];
学科分类号
摘要
As technology advances, the cooling loads of future surface ship electronic systems are increasing. Increasing cooling loads and the need for efficient energy use on board necessitate studies on cooling systems. This study demonstrates the feasibility of using single and double-effect LiBr-H2O absorption cooling systems on surface ships facing increasing cooling demands. The proposed systems utilize exhaust waste heat from gas turbines and diesel generators as a heat source. In the study, the combustion analysis of the exhaust gases is performed, and the waste heat that can be used for the absorption system generator supply is calculated for each speed stage for the gas turbine and each load condition for the diesel generator. Thermodynamic analysis of the system is conducted based on the surface ship's seasonal air and sea temperatures and average port and sailing hours over the ship's life cycle. Under these conditions, the energy obtained from the absorption cooling system on the simulated surface ship is used to reduce the ship generator load. Using the single effect LiBr-H2O absorption cooling system designed for the diesel generator reduces the load on the diesel generator, saving 20.2 tons in port, 7.4 tons underway, and 27.6 tons per year (1.83 %). The double effect LiBr-H2O absorption cooling system designed for the gas turbine saves 104.1 tons (6.92 %) of fuel for the diesel generator and 131.7 tons per year (8.75 %) for all systems. It was discovered that integrating the two systems on board can reduce 417.9 tons of CO2 emissions. It is also observed that an average of 894.1 kW of excess cooling power can be obtained, sufficient to meet the future cooling needs of the ship. This study confirms that the proposed cooling system is feasible and effective in meeting surface ships' increasing cooling demands.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Development and analysis of a new integrated power and cooling plant using LiBr-H2O mixture
    Shankar, R.
    Srinivas, T.
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2014, 39 (06): : 1547 - 1562
  • [22] Thermodynamic modelling of a double-effect LiBr-H2O absorption refrigeration cycle
    Iranmanesh, A.
    Mehrabian, M. A.
    HEAT AND MASS TRANSFER, 2012, 48 (12) : 2113 - 2123
  • [23] Simulation Study on Solar Single/Double-Effect Switching LiBr-H2O Absorption Refrigeration System
    Li, Qingyang
    Zhao, Shiqi
    Wang, Dechang
    Song, Qinglu
    Zhou, Sai
    Wang, Xiaohe
    Li, Yanhui
    ENERGIES, 2023, 16 (07)
  • [24] Exergetic and energetic comparison of LiCl-H2O and LiBr-H2O working pairs in a solar absorption cooling system
    Bellos, Evangelos
    Tzivanidis, Christos
    Antonopoulos, Kimon A.
    ENERGY CONVERSION AND MANAGEMENT, 2016, 123 : 453 - 461
  • [25] NOMOGRAPHS FOR H2O-LIBR ABSORPTION-PANEL COOLING SYSTEMS
    ROGDAKIS, ED
    ENERGY, 1992, 17 (11) : 1059 - 1066
  • [26] Modeling the dynamic simulation and control of a single effect LiBr-H2O absorption chiller
    Xu, Yu-jie
    Zhang, Shi-jie
    Xiao, Yun-han
    APPLIED THERMAL ENGINEERING, 2016, 107 : 1183 - 1191
  • [27] Thermodynamic modelling of a single-effect LiBr-H2O absorption refrigeration cycle
    Mehrabian, MA
    Shahbeik, AE
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2005, 219 (E3) : 261 - 273
  • [28] Performance prediction of a solar/gas driving double effect LiBr-H2O absorption system
    Liu, YL
    Wang, RZ
    RENEWABLE ENERGY, 2004, 29 (10) : 1677 - 1695
  • [29] Energy and exergy analysis of a double effect LiBr-H2O and LiCl-H2O chillers
    Kilic, M.
    Ravul, H. B.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2016, 48 : 312 - 317
  • [30] Solution Crystallization Detection for double-effect LiBr-H2O steam absorption chiller
    Gilani, Syed Ihtsham-ul-Haq
    Ahmed, Mojahid Sidahmed Mohammed Salih
    CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 : 1522 - 1528