Interpretable Multiscale Convolutional Neural Network for Classification and Feature Visualization of Weak Raman Spectra of Biomolecules at Cell Membranes

被引:0
|
作者
Chin, Che-Lun [1 ]
Chang, Chia-En [1 ]
Chao, Ling [1 ]
机构
[1] Natl Taiwan Univ, Dept Chem Engn, Taipei 10617, Taiwan
来源
ACS SENSORS | 2025年
关键词
convolutional neural networks (CNN); Raman spectroscopy; interpretable; multiscale; biomolecular spectra; AMINO-ACIDS; SECONDARY STRUCTURE; SPECTROSCOPY; PROTEINS; SCATTERING; DYNAMICS; TISSUE; BANDS;
D O I
10.1021/acssensors.4c03260
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Raman spectroscopy in biological applications faces challenges due to complex spectra, characterized by peaks of varying widths and significant biological background noise. Convolutional neural networks (CNNs) are widely used for spectrum classification due to their ability to capture local peak features. In this study, we introduce a multiscale CNN designed to detect weak biomolecule signals and differentiate spectra with features that cannot be statistically distinguished. The approach is further enhanced by a new visualization technique tailored for multiscale spectral analysis, providing clear insights into classification results. Using the classification of cholera toxin B subunit (CTB)-treated versus untreated cell membrane samples, whose spectra cannot be statistically differentiated, the optimized multiscale CNN achieved superior performance compared to traditional machine learning methods and existing multiscale CNNs, with accuracy (99.22%), sensitivity (99.27%), specificity (99.16%), and precision (99.20%). Our new visualization method, based on gradients of activation maps with respect to class scores, generates saliency scores that capture sample variations, with decision-making relying on consistently identified peak features. By visualizing the effects of different kernel sizes, Grad-AM highlights features at varying scales, aligning closely with spectral features and enhancing CNN interpretability in complex biomolecular analysis. These advancements demonstrate the potential of our method to improve spectral analysis and reveal previously hidden peaks in complex biological environments.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Text Feature Extraction and Classification Based on Convolutional Neural Network (CNN)
    Zhang, Taohong
    Li, Cunfang
    Cao, Nuan
    Ma, Rui
    Zhang, ShaoHua
    Ma, Nan
    DATA SCIENCE, PT 1, 2017, 727 : 472 - 485
  • [42] Audio Feature Extraction and Classification Technology Based on Convolutional Neural Network
    Liu, Zhenfang
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (09) : 1425 - 1431
  • [43] Feature Extraction and Classification of Photovoltaic Panels Based on Convolutional Neural Network
    Prabhakaran, S.
    Uthra, R. Annie
    Preetharoselyn, J.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 1437 - 1455
  • [44] Accurate Modulation Classification with Reusable-Feature Convolutional Neural Network
    Thien Huynh-The
    Hua, Cam-Hao
    Doan, Van-Sang
    Kim, Dong-Seong
    IEEE ICCE 2020: 2020 IEEE EIGHTH INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND ELECTRONICS (ICCE), 2021, : 12 - 17
  • [45] Visual Attribute Classification Using Feature Selection and Convolutional Neural Network
    Qian, Rongqiang
    Yue, Yong
    Coenen, Frans
    Zhang, Bailing
    PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, : 649 - 653
  • [46] A hybrid convolutional neural network approach for feature selection and disease classification
    Debata, Prajna Paramita
    Mohapatra, Puspanjali
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2021, 29 : 2580 - 2599
  • [47] Galaxy spectral classification and feature analysis based on convolutional neural network
    Wu, Ying
    Tao, Yihan
    Fan, Dongwei
    Cui, Chenzhou
    Zhang, Yanxia
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (01) : 1163 - 1176
  • [48] A Feature Aggregation Convolutional Neural Network for Remote Sensing Scene Classification
    Lu, Xiaoqiang
    Sun, Hao
    Zheng, Xiangtao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10): : 7894 - 7906
  • [49] Multiscale Feature Search-Based Graph Convolutional Network for Hyperspectral Image Classification
    Wu, Ke
    Zhan, Yanting
    An, Ying
    Li, Suyi
    REMOTE SENSING, 2024, 16 (13)
  • [50] Visualization and classification of mushroom species with multi-feature fusion of metaheuristics-based convolutional neural network model
    Ozbay, Erdal
    Ozbay, Feyza Altunbey
    Gharehchopogh, Farhad Soleimanian
    APPLIED SOFT COMPUTING, 2024, 164