Interpretable Multiscale Convolutional Neural Network for Classification and Feature Visualization of Weak Raman Spectra of Biomolecules at Cell Membranes

被引:0
|
作者
Chin, Che-Lun [1 ]
Chang, Chia-En [1 ]
Chao, Ling [1 ]
机构
[1] Natl Taiwan Univ, Dept Chem Engn, Taipei 10617, Taiwan
来源
ACS SENSORS | 2025年
关键词
convolutional neural networks (CNN); Raman spectroscopy; interpretable; multiscale; biomolecular spectra; AMINO-ACIDS; SECONDARY STRUCTURE; SPECTROSCOPY; PROTEINS; SCATTERING; DYNAMICS; TISSUE; BANDS;
D O I
10.1021/acssensors.4c03260
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Raman spectroscopy in biological applications faces challenges due to complex spectra, characterized by peaks of varying widths and significant biological background noise. Convolutional neural networks (CNNs) are widely used for spectrum classification due to their ability to capture local peak features. In this study, we introduce a multiscale CNN designed to detect weak biomolecule signals and differentiate spectra with features that cannot be statistically distinguished. The approach is further enhanced by a new visualization technique tailored for multiscale spectral analysis, providing clear insights into classification results. Using the classification of cholera toxin B subunit (CTB)-treated versus untreated cell membrane samples, whose spectra cannot be statistically differentiated, the optimized multiscale CNN achieved superior performance compared to traditional machine learning methods and existing multiscale CNNs, with accuracy (99.22%), sensitivity (99.27%), specificity (99.16%), and precision (99.20%). Our new visualization method, based on gradients of activation maps with respect to class scores, generates saliency scores that capture sample variations, with decision-making relying on consistently identified peak features. By visualizing the effects of different kernel sizes, Grad-AM highlights features at varying scales, aligning closely with spectral features and enhancing CNN interpretability in complex biomolecular analysis. These advancements demonstrate the potential of our method to improve spectral analysis and reveal previously hidden peaks in complex biological environments.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Interpretable classification of Alzheimer's disease pathologies with a convolutional neural network pipeline
    Tang, Ziqi
    Chuang, Kangway, V
    DeCarli, Charles
    Jin, Lee-Way
    Beckett, Laurel
    Keiser, Michael J.
    Dugger, Brittany N.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [22] Application of Feature Optimization and Convolutional Neural Network in Crop Classification
    Liu G.
    Jiang X.
    Tang B.
    Journal of Geo-Information Science, 2021, 23 (06) : 1071 - 1081
  • [23] Biomolecule classification by multiscale one-dimensional convolutional neural network
    Chang, Chia-En
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 141A - 141A
  • [24] Hyperspectral Image Classification Based on Spectral Multiscale Convolutional Neural Network
    Shi, Cuiping
    Sun, Jingwei
    Wang, Liguo
    REMOTE SENSING, 2022, 14 (08)
  • [25] Automated Stellar Spectra Classification with Ensemble Convolutional Neural Network
    Zhao, Zhuang
    Wei, Jiyu
    Jiang, Bin
    ADVANCES IN ASTRONOMY, 2022, 2022
  • [26] OmiQnet: Multiscale feature aggregation convolutional neural network for omnidirectional image assessment
    Fan, Yu
    Chen, Chunyi
    APPLIED INTELLIGENCE, 2024, 54 (07) : 5711 - 5727
  • [27] Single convolutional neural network model for multiple preprocessing of Raman spectra
    Shen, Jiahao
    Li, Miao
    Li, Zhongfeng
    Zhang, Zhuoyong
    Zhang, Xin
    VIBRATIONAL SPECTROSCOPY, 2022, 121
  • [28] A Lightweight Convolutional Neural Network for Bacterial Identification Based on Raman Spectra
    Zhou, Bo
    Zhang, Ru
    Tong, Yu-Kai
    Ye, Anpei
    2022 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE, ACP, 2022, : 2082 - 2086
  • [29] Deeply-recursive convolutional neural network for Raman spectra identification
    Zhou, Wei
    Tang, Yujun
    Qian, Ziheng
    Wang, Junwei
    Guo, Hanming
    RSC ADVANCES, 2022, 12 (08) : 5053 - 5061
  • [30] Analysis and Classification of Hepatitis Infections Using Raman Spectroscopy and Multiscale Convolutional Neural Networks
    Zhao, Y.
    Tian, Sh
    Yu, L.
    Zhang, Zh
    Zhang, W.
    JOURNAL OF APPLIED SPECTROSCOPY, 2021, 88 (02) : 441 - 451