MFH: Marrying Frequency Domain with Handwritten Mathematical Expression Recognition

被引:0
|
作者
Yang, Huanxin [1 ]
Wang, Qiwen [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Future Technol, Wuhan 430074, Peoples R China
关键词
Handwritten mathematical expression recognition; Frequency domain analysis; Discrete cosine transform;
D O I
10.1007/978-981-97-8511-7_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Handwritten mathematical expression recognition (HMER) suffers from complex formula structures and character layouts in sequence prediction. In this paper, we incorporate frequency domain analysis into HMER and propose a method that marries frequency domain with HMER (MFH), leveraging the discrete cosine transform (DCT). We emphasize the structural analysis assistance of frequency information for recognizing mathematical formulas. When implemented on various baseline models, our network exhibits a consistent performance enhancement, demonstrating the efficacy of frequency domain information. Experiments show that our MFH-CoMER achieves noteworthy accuracy rates of 61.66%/62.07%/63.72% on the CROHME 2014/2016/2019 test sets. The source code is available at https://github.com/Hryxyhe/MFH.
引用
收藏
页码:173 / 186
页数:14
相关论文
共 50 条
  • [41] CoMER: Modeling Coverage for Transformer-Based Handwritten Mathematical Expression Recognition
    Zhao, Wenqi
    Gao, Liangcai
    COMPUTER VISION - ECCV 2022, PT XXVIII, 2022, 13688 : 392 - 408
  • [42] Multi-Scale Attention with Dense Encoder for Handwritten Mathematical Expression Recognition
    Zhang, Jianshu
    Du, Jun
    Dai, Lirong
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2245 - 2250
  • [43] Offline handwritten mathematical expression recognition based on YOLOv5s
    Fei Li
    Hongbo Fang
    Dengzhun Wang
    Ruixin Liu
    Qing Hou
    Benliang Xie
    The Visual Computer, 2024, 40 : 1439 - 1452
  • [44] Offline handwritten mathematical expression recognition based on YOLOv5s
    Li, Fei
    Fang, Hongbo
    Wang, Dengzhun
    Liu, Ruixin
    Hou, Qing
    Xie, Benliang
    VISUAL COMPUTER, 2024, 40 (03): : 1439 - 1452
  • [45] Symbol Location-Aware Network for Improving Handwritten Mathematical Expression Recognition
    Fu, Yingnan
    Cai, Wenyuan
    Gao, Ming
    Zhou, Aoying
    PROCEEDINGS OF THE 2023 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2023, 2023, : 516 - 524
  • [46] A Transformer-based Syntax Tree Decoder for Handwritten Mathematical Expression Recognition
    Zhou B.
    Cao J.
    Wang Y.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2023, 59 (06): : 909 - 914
  • [47] Bidirectional trained tree-structured decoder for Handwritten Mathematical Expression Recognition
    Cheng, Hanbo
    Liu, Chenyu
    Hu, Pengfei
    Zhang, Zhenrong
    Ma, Jiefeng
    Du, Jun
    PATTERN RECOGNITION, 2025, 165
  • [48] On-line recognition handwritten mathematical symbols
    Zhao, XJ
    Liu, XY
    Zheng, SL
    Pan, BC
    Yuan, YT
    PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS 1 AND 2, 1997, : 645 - 648
  • [49] The method of containers in the recognition of handwritten mathematical texts
    Kirichenko, N.F.
    Polishchuk, A.A.
    Problemy Upravleniya I Informatiki (Avtomatika), 2003, (06): : 54 - 71
  • [50] MathReader: API for Handwritten Mathematical Expressions Recognition
    dos Reis, Caroline Santos
    Lorenzi, Fabiana
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 1282 - 1289