MFH: Marrying Frequency Domain with Handwritten Mathematical Expression Recognition

被引:0
|
作者
Yang, Huanxin [1 ]
Wang, Qiwen [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Future Technol, Wuhan 430074, Peoples R China
关键词
Handwritten mathematical expression recognition; Frequency domain analysis; Discrete cosine transform;
D O I
10.1007/978-981-97-8511-7_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Handwritten mathematical expression recognition (HMER) suffers from complex formula structures and character layouts in sequence prediction. In this paper, we incorporate frequency domain analysis into HMER and propose a method that marries frequency domain with HMER (MFH), leveraging the discrete cosine transform (DCT). We emphasize the structural analysis assistance of frequency information for recognizing mathematical formulas. When implemented on various baseline models, our network exhibits a consistent performance enhancement, demonstrating the efficacy of frequency domain information. Experiments show that our MFH-CoMER achieves noteworthy accuracy rates of 61.66%/62.07%/63.72% on the CROHME 2014/2016/2019 test sets. The source code is available at https://github.com/Hryxyhe/MFH.
引用
收藏
页码:173 / 186
页数:14
相关论文
共 50 条
  • [31] Offline Handwritten Mathematical Expression Recognition via Graph Reasoning Network
    Tang, Jia-Man
    Wu, Jin-Wen
    Yin, Fei
    Huang, Lin-Lin
    PATTERN RECOGNITION, ACPR 2021, PT I, 2022, 13188 : 17 - 31
  • [32] Efficient search strategy in structural analysis for handwritten mathematical expression recognition
    Rhee, Taik Heon
    Kim, Jin Hyung
    PATTERN RECOGNITION, 2009, 42 (12) : 3192 - 3201
  • [33] The study of structure analysis strategy in handwritten recognition of general mathematical expression
    Qi Xiangwei
    Pan Weimin
    Yu Sup
    Wang Yang
    2009 INTERNATIONAL FORUM ON INFORMATION TECHNOLOGY AND APPLICATIONS, VOL 2, PROCEEDINGS, 2009, : 101 - 107
  • [34] Stroke constrained attention network for online handwritten mathematical expression recognition
    Wang, Jiaming
    Du, Jun
    Zhang, Jianshu
    Wang, Bin
    Ren, Bo
    PATTERN RECOGNITION, 2021, 119 (119)
  • [35] Improving Handwritten Mathematical Expression Recognition via Similar Symbol Distinguishing
    Li, Zhe
    Wang, Xinyu
    Liu, Yuliang
    Jin, Lianwen
    Huang, Yichao
    Ding, Kai
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 90 - 102
  • [36] MRD: A Memory Relation Decoder for Online Handwritten Mathematical Expression Recognition
    Wang, Jiaming
    Wang, Qing
    Du, Jun
    Zhang, Jianshu
    Wang, Bin
    Ren, Bo
    DOCUMENT ANALYSIS AND RECOGNITION, ICDAR 2021, PT III, 2021, 12823 : 39 - 54
  • [37] Learning Symbol Relation Tree for Online Handwritten Mathematical Expression Recognition
    Thanh-Nghia Truong
    Hung Tuan Nguyen
    Cuong Tuan Nguyen
    Nakagawa, Masaki
    PATTERN RECOGNITION, ACPR 2021, PT II, 2022, 13189 : 307 - 321
  • [38] NAMER: Non-autoregressive Modeling for Handwritten Mathematical Expression Recognition
    Liu, Chenyu
    Pan, Jia
    Hu, Jinshui
    Yin, Baocai
    Yin, Bing
    Chen, Mingjun
    Liu, Cong
    Du, Jun
    Liu, Qingfeng
    COMPUTER VISION-ECCV 2024, PT LVII, 2025, 15115 : 273 - 291
  • [39] Recognition of online handwritten mathematical expressions
    Garain, U
    Chaudhuri, BB
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (06): : 2366 - 2376
  • [40] SRD: A Tree Structure Based Decoder for Online Handwritten Mathematical Expression Recognition
    Zhang, Jianshu
    Du, Jun
    Yang, Yongxin
    Song, Yi-Zhe
    Dai, Lirong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 2471 - 2480