Low-Light Image Enhancement by Retinex-Based Algorithm Unrolling and Adjustment

被引:0
|
作者
Liu, Xinyi [1 ]
Xie, Qi [1 ]
Zhao, Qian [1 ]
Wang, Hong [2 ]
Meng, Deyu [1 ,3 ,4 ,5 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Tencent, Jarvis Lab, Shenzhen 518020, Peoples R China
[3] Xi An Jiao Tong Univ, Minist Educ, Key Lab Intelligent Networks & Network Secur, Xian 710049, Shaanxi, Peoples R China
[4] Pazhou Lab Huangpu, Guangzhou 510555, Guangdong, Peoples R China
[5] Macau Univ Sci & Technol, Macau Inst Syst Engn, Taipa, Macao, Peoples R China
关键词
Lighting; Reflectivity; Deep learning; Brightness; Pipelines; Image enhancement; Degradation; Algorithm unrolling; deep learning; low-light image enhancement (LIE); Retinex theory;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Low-light image enhancement (LIE) has attracted tremendous research interests in recent years. Retinex theory-based deep learning methods, following a decomposition-adjustment pipeline, have achieved promising performance due to their physical interpretability. However, existing Retinex-based deep learning methods are still suboptimal, failing to leverage useful insights from traditional approaches. Meanwhile, the adjustment step is either oversimplified or overcomplicated, resulting in unsatisfactory performance in practice. To address these issues, we propose a novel deep-learning framework for LIE. The framework consists of a decomposition network (DecNet) inspired by algorithm unrolling and adjustment networks considering both global and local brightness. The algorithm unrolling allows the integration of both implicit priors learned from data and explicit priors inherited from traditional methods, facilitating better decomposition. Meanwhile, considering global and local brightness guides the design of effective yet lightweight adjustment networks. Moreover, we introduce a self-supervised fine-tuning strategy that achieves promising performance without manual hyperparameter tuning. Extensive experiments on benchmark LIE datasets demonstrate the superiority of our approach over existing state-of-the-art methods both quantitatively and qualitatively. Code is available at <uri>https://github.com/Xinyil256/RAUNA2023</uri>.
引用
收藏
页码:15758 / 15771
页数:14
相关论文
共 50 条
  • [21] Improved Retinex-Theory-Based Low-Light Image Enhancement Algorithm
    Wang, Jiarui
    Wang, Hanjia
    Sun, Yu
    Yang, Jie
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [22] Research on low-light image enhancement based on MER-Retinex algorithm
    Zhou, Rongfeng
    Wang, Rugang
    Wang, Yuanyuan
    Zhou, Feng
    Guo, Naihong
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (01) : 803 - 811
  • [23] Low-Light Image Enhancement Algorithm Based on Improved Retinex-Net
    Ou J.
    Hu X.
    Yang J.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2021, 34 (01): : 77 - 86
  • [24] Adaptive Low-Light Image Enhancement Optimization Framework with Algorithm Unrolling
    He, Qichang
    Liang, Lingyu
    Xiao, Wocheng
    Liang, Mingju
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XI, 2024, 14435 : 158 - 170
  • [25] Research on low-light image enhancement based on MER-Retinex algorithm
    Rongfeng Zhou
    Rugang Wang
    Yuanyuan Wang
    Feng Zhou
    Naihong Guo
    Signal, Image and Video Processing, 2024, 18 : 803 - 811
  • [26] A Low Cost FPGA Implementation of Retinex Based Low-Light Image Enhancement Algorithm
    Upadhyay, Bharat Bhushan
    Sarawadekar, Kishor
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (07) : 3503 - 3507
  • [27] Retinex-inspired Unrolling with Cooperative Prior Architecture Search for Low-light Image Enhancement
    Liu, Risheng
    Ma, Long
    Zhang, Jiaao
    Fan, Xin
    Luo, Zhongxuan
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 10556 - 10565
  • [28] RDMA: low-light image enhancement based on retinex decomposition and multi-scale adjustment
    Jiafeng Li
    Shuai Hao
    Tianshuo Li
    Li Zhuo
    Jing Zhang
    International Journal of Machine Learning and Cybernetics, 2024, 15 : 1693 - 1709
  • [29] Low-Light Image Enhancement Based On Retinex and Saliency Theories
    Hao, Pengcheng
    Wang, Shuang
    Li, Shupei
    Yang, Meng
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 2594 - 2597
  • [30] A Joint Network for Low-Light Image Enhancement Based on Retinex
    Jiang, Yonglong
    Zhu, Jiahe
    Li, Liangliang
    Ma, Hongbing
    COGNITIVE COMPUTATION, 2024, 16 (06) : 3241 - 3259