Facilitating university admission using a chatbot based on large language models with retrieval-augmented generation

被引:0
|
作者
Chen, Zheng [1 ]
Zou, Di [2 ]
Xie, Haoran [3 ]
Lou, Huajie [1 ]
Pang, Zhiyuan [1 ]
机构
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept English & Commun, Hong Kong, Peoples R China
[3] Lingnan Univ, Sch Data Sci, Hong Kong, Peoples R China
来源
EDUCATIONAL TECHNOLOGY & SOCIETY | 2024年 / 27卷 / 04期
关键词
University admissions; Chatbot; GPT; Large language models; Retrieval-augmented generation; SUPPORT;
D O I
10.30191/ETS.202410_27(4).TP02
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
University admission consultation is a professional service that assists students with the university application process. Typically, accessing this service entails exploring university websites, directly contacting faculty members and officers via phone calls or emails, and engaging educational intermediaries. University admission consultation is crucial for both students and institutions. However, conventional consultation methods face challenges such as time and spatial constraints, leading to a growing interest in utilizing chatbots for university admission consultation. In this study, we propose a novel approach that leverages generative pretrained transformer (ChatGPT 3.5) models and implements the retrieval-augmented generation technique using the LlamaIndex framework. To evaluate the effectiveness of this approach, we applied it to undergraduate admission data from three universities: a science and technology university in the United States, a comprehensive university in Kenya, and a comprehensive university in Hong Kong. We also gathered feedback from 53 high school students who tested the chatbot. The results demonstrated a significant improvement in average accuracy, from 41.4% with the ChatGPT 3.5 model to 89.5% with the proposed chatbot, with peak accuracy reaching 94.7%. User reviews also indicated a generally positive perception of the admission chatbot. This methodology has the potential to revolutionize university admissions by utilizing chatbots based on large language models with retrieval-augmented generation.
引用
收藏
页码:454 / 470
页数:17
相关论文
共 50 条
  • [31] Systematic Analysis of Retrieval-Augmented Generation-Based LLMs for Medical Chatbot Applications
    Bora, Arunabh
    Cuayahuitl, Heriberto
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2024, 6 (04): : 2355 - 2374
  • [32] Enhancement of the Performance of Large Language Models inDiabetes Education through Retrieval-Augmented Generation:Comparative Study
    Wang, Dingqiao
    Liang, Jiangbo
    Ye, Jinguo
    Li, Jingni
    Li, Jingpeng
    Zhang, Qikai
    Hu, Qiuling
    Pan, Caineng
    Wang, Dongliang
    Liu, Zhong
    Shi, Wen
    Shi, Danli
    Li, Fei
    Qu, Bo
    Zheng, Yingfeng
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2024, 26
  • [33] Surface-Based Retrieval Reduces Perplexity of Retrieval-Augmented Language Models
    Doostmohammadi, Ehsan
    Norlund, Tobias
    Kuhlmann, Marco
    Johansson, Richard
    61ST CONFERENCE OF THE THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 2, 2023, : 521 - 529
  • [34] Retrieval-Augmented Generation for Large Language Models in Radiology: Another Leap Forward in Board Examination Performance
    Bhayana, Rajesh
    Fawzy, Aly
    Deng, Yangqing
    Bleakney, Robert R.
    Krishna, Satheesh
    RADIOLOGY, 2024, 313 (01)
  • [35] Injury degree appraisal of large language model based on retrieval-augmented generation and deep learning
    Zhang, Fan
    Luo, Yifang
    Gao, Zihuan
    Han, Aihua
    INTERNATIONAL JOURNAL OF LAW AND PSYCHIATRY, 2025, 100
  • [36] Tree of Clarifications: Answering Ambiguous Questions with Retrieval-Augmented Large Language Models
    Kim, Gangwoo
    Kim, Sungdong
    Jeon, Byeongguk
    Park, Joonsuk
    Kang, Jaewoo
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, EMNLP 2023, 2023, : 996 - 1009
  • [37] Retrieval-augmented Recommender System: Enhancing Recommender Systems with Large Language Models
    Di Palma, Dario
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 1369 - 1373
  • [38] Performance comparison of retrieval-augmented generation and fine-tuned large language models for construction safety management knowledge retrieval
    Lee, Jungwon
    Ahn, Seungjun
    Kim, Daeho
    Kim, Dongkyun
    AUTOMATION IN CONSTRUCTION, 2024, 168
  • [39] SafetyRAG: Towards Safe Large Language Model-Based Application through Retrieval-Augmented Generation
    Omri, Sihem
    Abdelkader, Manel
    Hamdi, Mohamed
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2025, 16 (02) : 243 - 250
  • [40] LeanDojo: Theorem Proving with Retrieval-Augmented Language Models
    Yang, Kaiyu
    Swope, Aidan M.
    Gu, Alex
    Chalamala, Rahul
    Song, Peiyang
    Yu, Shixing
    Godil, Saad
    Prenger, Ryan
    Anandkumar, Anima
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,