Facilitating university admission using a chatbot based on large language models with retrieval-augmented generation

被引:0
|
作者
Chen, Zheng [1 ]
Zou, Di [2 ]
Xie, Haoran [3 ]
Lou, Huajie [1 ]
Pang, Zhiyuan [1 ]
机构
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept English & Commun, Hong Kong, Peoples R China
[3] Lingnan Univ, Sch Data Sci, Hong Kong, Peoples R China
来源
EDUCATIONAL TECHNOLOGY & SOCIETY | 2024年 / 27卷 / 04期
关键词
University admissions; Chatbot; GPT; Large language models; Retrieval-augmented generation; SUPPORT;
D O I
10.30191/ETS.202410_27(4).TP02
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
University admission consultation is a professional service that assists students with the university application process. Typically, accessing this service entails exploring university websites, directly contacting faculty members and officers via phone calls or emails, and engaging educational intermediaries. University admission consultation is crucial for both students and institutions. However, conventional consultation methods face challenges such as time and spatial constraints, leading to a growing interest in utilizing chatbots for university admission consultation. In this study, we propose a novel approach that leverages generative pretrained transformer (ChatGPT 3.5) models and implements the retrieval-augmented generation technique using the LlamaIndex framework. To evaluate the effectiveness of this approach, we applied it to undergraduate admission data from three universities: a science and technology university in the United States, a comprehensive university in Kenya, and a comprehensive university in Hong Kong. We also gathered feedback from 53 high school students who tested the chatbot. The results demonstrated a significant improvement in average accuracy, from 41.4% with the ChatGPT 3.5 model to 89.5% with the proposed chatbot, with peak accuracy reaching 94.7%. User reviews also indicated a generally positive perception of the admission chatbot. This methodology has the potential to revolutionize university admissions by utilizing chatbots based on large language models with retrieval-augmented generation.
引用
收藏
页码:454 / 470
页数:17
相关论文
共 50 条
  • [21] CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models
    Lyu, Yuanjie
    Li, Zhiyu
    Niu, Simin
    Xiong, Feiyu
    Tang, Bo
    Wang, Wenjin
    Wu, Hao
    Liu, Huanyong
    Xu, Tong
    Chen, Enhong
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2025, 43 (02)
  • [22] Retrieval-augmented large language models for clinical trial screening.
    He, Jianqiao
    Gai, Shanglei
    Ho, Si Xian
    Chua, Shi Ling
    Oo, Viviana
    Zaw, Ma Wai Wai
    Tan, Daniel Shao-Weng
    Tan, Ryan
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (23_SUPPL) : 157 - 157
  • [23] Advancing Cyber Incident Timeline Analysis Through Retrieval-Augmented Generation and Large Language Models
    Loumachi, Fatma Yasmine
    Ghanem, Mohamed Chahine
    Ferrag, Mohamed Amine
    COMPUTERS, 2025, 14 (02)
  • [24] Retrieval-augmented large language models for clinical trial screening.
    Tan, Ryan
    Ho, Si Xian
    Oo, Shiyun Vivianna Fequira
    Chua, Shi Ling
    Zaw, Ma Wai Wai
    Tan, Daniel Shao-Weng
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)
  • [25] Utilizing Retrieval-Augmented Large Language Models for Pregnancy Nutrition Advice
    Bano, Taranum
    Vadapalli, Jagadeesh
    Karki, Bishwa
    Thoene, Melissa K.
    VanOrmer, Matt
    Berry, Ann L. Anderson
    Tsai, Chun-Hua
    NEW TRENDS IN DISRUPTIVE TECHNOLOGIES, TECH ETHICS, AND ARTIFICIAL INTELLIGENCE, DITTET 2024, 2024, 1459 : 85 - 96
  • [26] Unraveling and Mitigating Retriever Inconsistencies in Retrieval-Augmented Large Language Models
    Li, Mingda
    Li, Xinyu
    Chen, Yifan
    Xuan, Wenfeng
    Zhang, Weinan
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 4833 - 4850
  • [27] Can Small Language Models With Retrieval-Augmented Generation Replace Large Language Models When Learning Computer Science?
    Liu, Suqing
    Yu, Zezhu
    Huang, Feiran
    Bulbulia, Yousef
    Bergen, Andreas
    Liut, Michael
    PROCEEDINGS OF THE 2024 CONFERENCE INNOVATION AND TECHNOLOGY IN COMPUTER SCIENCE EDUCATION, VOL 1, ITICSE 2024, 2024, : 388 - 393
  • [28] OG-RAG: ONTOLOGY-GROUNDED RETRIEVAL-AUGMENTED GENERATION FOR LARGE LANGUAGE MODELS
    Sharma, Kartik
    Kumar, Peeyush
    Li, Yunqing
    arXiv,
  • [29] Layered Query Retrieval: An Adaptive Framework for Retrieval-Augmented Generation in Complex Question Answering for Large Language Models
    Huang, Jie
    Wang, Mo
    Cui, Yunpeng
    Liu, Juan
    Chen, Li
    Wang, Ting
    Li, Huan
    Wu, Jinming
    APPLIED SCIENCES-BASEL, 2024, 14 (23):
  • [30] In-Context Retrieval-Augmented Language Models
    Ram, Ori
    Levine, Yoav
    Dalmedigos, Itay
    Muhlgay, Dor
    Shashua, Amnon
    Leyton-Brown, Kevin
    Shoham, Yoav
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2023, 11 : 1316 - 1331