Stokes Waves in Finite Depth Fluids

被引:0
|
作者
Semenova, Anastassiya [1 ]
Byrnes, Eleanor [1 ]
机构
[1] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
关键词
Water waves; Finite depth fluids; Numerical simulations; STEEP GRAVITY-WAVES; SURFACE; WATER; CONJECTURE; EXISTENCE;
D O I
10.1007/s42286-024-00108-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider traveling waves on a surface of an ideal fluid of finite depth. The equation describing Stokes waves in conformal variables formulation are referred to as the Babenko equation. We use a Newton-Conjugate-Gradient method to compute Stokes waves for a range of conformal depths from deep to shallow water. In deep water, we compute eigenvalues of the linearized Babenko equation with Fourier-Floquet-Hill method. The secondary bifurcation points that correspond to double period bifurcations of the Stokes waves are identified on the family of waves. In shallow water, we find solutions that have broad troughs and sharp crests, and which resemble cnoidal or soliton-like solution profiles of the Korteweg-de Vries equation. Regardless of depth, we find that these solutions form a 2 pi/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\pi /3$$\end{document} angle at the crest in the limit of large steepness.
引用
收藏
页码:35 / 49
页数:15
相关论文
共 50 条
  • [41] INTERNAL WAVES OF PERMANENT FORM IN FLUIDS OF GREAT DEPTH
    BENJAMIN, TB
    JOURNAL OF FLUID MECHANICS, 1967, 29 : 559 - &
  • [42] SHOCK WAVES AND THE PROPAGATION OF FINITE PULSES IN FLUIDS
    PENNEY, WG
    PIKE, HHM
    REPORTS ON PROGRESS IN PHYSICS, 1950, 13 : 46 - 82
  • [43] Forced ILW-Burgers Equation as a Model for Rossby Solitary Waves Generated by Topography in Finite Depth Fluids
    Yang, Hongwei
    Yin, Baoshu
    Shi, Yunlong
    Wang, Qingbiao
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [44] PARTICLE TRAJECTORIES IN EXTREME STOKES WAVES OVER INFINITE DEPTH
    Lyons, Tony
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (08) : 3095 - 3107
  • [45] INTERNAL-WAVE SOLITONS OF FLUIDS WITH FINITE DEPTH
    CHEN, HH
    LEE, YC
    PHYSICAL REVIEW LETTERS, 1979, 43 (04) : 264 - 266
  • [46] Partially reflected waves in water of finite depth
    Li, Meng-Syue
    Hsu, Hung-Chu
    Chen, Yang-Yih
    Zou, Qingping
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 59
  • [47] On cusped solitary waves in finite water depth
    Liao, Shijun
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (03) : 769 - 775
  • [48] KAM for gravity water waves in finite depth
    Baldi, Pietro
    Berti, Massimiliano
    Haus, Emanuele
    Montalto, Riccardo
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (02) : 215 - 236
  • [49] Amplification of wind waves in reservoirs of finite depth
    O. N. Mel’nikova
    K. V. Pokazeev
    F. R. Potapov
    Bulletin of the Russian Academy of Sciences: Physics, 2012, 76 (12) : 1353 - 1356
  • [50] Numerical simulation of standing waves in finite depth
    Greenhow, Martin
    ADVANCES IN WATER RESOURCES, 1982, 5 (03) : 185 - 189