Stokes Waves in Finite Depth Fluids

被引:0
|
作者
Semenova, Anastassiya [1 ]
Byrnes, Eleanor [1 ]
机构
[1] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
关键词
Water waves; Finite depth fluids; Numerical simulations; STEEP GRAVITY-WAVES; SURFACE; WATER; CONJECTURE; EXISTENCE;
D O I
10.1007/s42286-024-00108-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider traveling waves on a surface of an ideal fluid of finite depth. The equation describing Stokes waves in conformal variables formulation are referred to as the Babenko equation. We use a Newton-Conjugate-Gradient method to compute Stokes waves for a range of conformal depths from deep to shallow water. In deep water, we compute eigenvalues of the linearized Babenko equation with Fourier-Floquet-Hill method. The secondary bifurcation points that correspond to double period bifurcations of the Stokes waves are identified on the family of waves. In shallow water, we find solutions that have broad troughs and sharp crests, and which resemble cnoidal or soliton-like solution profiles of the Korteweg-de Vries equation. Regardless of depth, we find that these solutions form a 2 pi/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\pi /3$$\end{document} angle at the crest in the limit of large steepness.
引用
收藏
页码:35 / 49
页数:15
相关论文
共 50 条
  • [31] Crescent waves of finite water depth
    Zou, Zhili
    Zhou, Yalong
    Yan, Kai
    6th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering, CGJOINT 2012, 2012, : 135 - 144
  • [32] CRESCENT WAVES ON FINITE WATER DEPTH
    Zou, Zhili
    Zhou, Yalong
    Yan, Kai
    PROCEEDINGS OF THE ASME 32ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING - 2013 - VOL 5, 2013,
  • [33] Gouyon waves in water of finite depth
    Abrashkin, A. A.
    MONATSHEFTE FUR MATHEMATIK, 2022, 199 (04): : 717 - 732
  • [34] EDGE WAVES IN AN OCEAN OF FINITE DEPTH
    BALL, FK
    DEEP-SEA RESEARCH, 1967, 14 (01): : 79 - &
  • [35] Gouyon waves in water of finite depth
    A. A. Abrashkin
    Monatshefte für Mathematik, 2022, 199 : 717 - 732
  • [36] Bifurcation Analysis and Propagation Conditions of Free-Surface Waves in Incompressible Viscous Fluids of Finite Depth
    Ghahraman, Arash
    Bene, Gyula
    FLUIDS, 2023, 8 (06)
  • [37] Finite depth Stokes' first problem of thixotropic fluid
    Wenwen LIU
    Jie PENG
    Keqin ZHU
    Applied Mathematics and Mechanics(English Edition), 2016, 37 (01) : 59 - 74
  • [38] Finite depth Stokes’ first problem of thixotropic fluid
    Wenwen Liu
    Jie Peng
    Keqin Zhu
    Applied Mathematics and Mechanics, 2016, 37 : 59 - 74
  • [39] Finite depth Stokes' first problem of thixotropic fluid
    Liu, Wenwen
    Peng, Jie
    Zhu, Keqin
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2016, 37 (01) : 59 - 74
  • [40] The fourth-order nonlinear schrodinger equation for the envelope of Stokes waves on the surface of a finite-depth fluid
    Sedletsky, YV
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2003, 97 (01) : 180 - 193