Joint U-Nets with hierarchical graph structure and sparse Transformer for hyperspectral image classification

被引:0
|
作者
Zhu, Pengfei [1 ]
Liu, Jinglei [1 ]
机构
[1] Yantai Univ, Sch Comp & Control Engn, Yantai 264005, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image (HSI) classification; Hierarchical graph merging block; Sparse transformer block; Sparse self-attention mechanism; U-net; CONVOLUTIONAL NETWORKS;
D O I
10.1016/j.eswa.2025.127046
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral image (HSI) classification is a critical task in remote sensing, but existing U-Net and transformer- based models encounter significant challenges. Traditional U-Net architectures struggle with multi-scale feature extraction due to their fixed convolutional kernels, limiting their effectiveness in capturing complex spatial distributions. Transformer models, while adept at capturing global context, suffer from high computational complexity and inadequate sensitivity to local features in HSI. To address these limitations, we propose a novel joint U-Nets with hierarchical graph structure and sparse transformer (HGSTNet). HGSTNet introduces hierarchical graph merging blocks and incremental merging methods to dynamically extract and fuse multi-scale features, leveraging superpixel segmentation and hierarchical graph topology to enhance spatial correlation. Furthermore, to enhance the model's global context perception, we integrate a sparse transformer block in the first four encoder-decoder. Unlike traditional transformers, the sparse transformer reduces computational complexity and enhances feature capture by incorporating the sparse self-attention (SPA) module, which utilizes the sparse self-attention mechanism to suppress low-relevance or redundant information, thereby improving the capture of both local and global features. Experiments conducted on multiple HSI datasets, along with comparisons to other deep learning methods, demonstrate that HGSTNet exhibits strong competitiveness.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Fast Multifeature Joint Sparse Representation for Hyperspectral Image Classification
    Zhang, Erlei
    Zhang, Xiangrong
    Liu, Hongying
    Jiao, Licheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (07) : 1397 - 1401
  • [22] Weighted Kernel joint sparse representation for hyperspectral image classification
    Hu, Sixiu
    Xu, Chunhua
    Peng, Jiangtao
    Xu, Yan
    Tian, Long
    IET IMAGE PROCESSING, 2019, 13 (02) : 254 - 260
  • [23] Nearest Regularized Joint Sparse Representation for Hyperspectral Image Classification
    Chen, Chen
    Chen, Na
    Peng, Jiangtao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (03) : 424 - 428
  • [24] Local adaptive joint sparse representation for hyperspectral image classification
    Peng, Jiangtao
    Jiang, Xue
    Chen, Na
    Fu, Huijing
    NEUROCOMPUTING, 2019, 334 : 239 - 248
  • [25] JOINT GROUP SPARSE COLLABORATIVE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Tian, Qing
    Zhao, Juan
    Bai, Xia
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 846 - 849
  • [26] Tripartite-structure transformer for hyperspectral image classification
    Wan, Liuwei
    Zhou, Meili
    Jiang, Shengqin
    Bai, Zongwen
    Zhang, Haokui
    COMPUTATIONAL INTELLIGENCE, 2024, 40 (01)
  • [27] An Offset Graph U-Net for Hyperspectral Image Classification
    Chen, Rong
    Vivone, Gemine
    Li, Guanghui
    Dai, Chenglong
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [28] HYPERSPECTRAL IMAGE CLASSIFICATION USING HIERARCHICAL SPATIAL-SPECTRAL TRANSFORMER
    Song, Chao
    Mei, Shaohui
    Ma, Mingyang
    Xu, Fulin
    Zhang, Yifan
    Du, Qian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3584 - 3587
  • [29] CNN-MIXER HIERARCHICAL SPECTRAL TRANSFORMER FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Liu, Wei
    Prasad, Saurabh
    Crawford, Melba
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5946 - 5949
  • [30] Pyramid Hierarchical Spatial-Spectral Transformer for Hyperspectral Image Classification
    Ahmad, Muhammad
    Butt, Muhammad Hassaan Farooq
    Mazzara, Manuel
    Distefano, Salvatore
    Khan, Adil Mehmood
    Altuwaijri, Hamad Ahmed
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 17681 - 17689