Pyramid Hierarchical Spatial-Spectral Transformer for Hyperspectral Image Classification

被引:4
|
作者
Ahmad, Muhammad [1 ]
Butt, Muhammad Hassaan Farooq [2 ]
Mazzara, Manuel [3 ]
Distefano, Salvatore [4 ]
Khan, Adil Mehmood [5 ]
Altuwaijri, Hamad Ahmed [6 ]
机构
[1] Natl Univ Comp & Emerging Sci, Dept Comp Sci, Chiniot Faisalabad Campus, Islamabad 35400, Pakistan
[2] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 611756, Peoples R China
[3] Innopolis Univ, Inst Software Dev & Engn, Innopolis 420500, Russia
[4] Univ Messina, Dipartimento Matemat & Informat, MIFT, I-98121 Messina, Italy
[5] Univ Hull, Sch Comp Sci, Kingston Upon Hull HU6 7RX, England
[6] King Saud Univ, Coll Humanities & Social Sci, Dept Geog, Riyadh 11451, Saudi Arabia
关键词
Transformers; Feature extraction; Convolution; Semantics; Computational modeling; Training; Data mining; Pyramid network; spatial-spectral transformer (SST); hyperspectral image classification (HSIC); VISION TRANSFORMER; NETWORK;
D O I
10.1109/JSTARS.2024.3461851
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The transformer model encounters challenges with variable-length input sequences, leading to efficiency and scalability concerns. To overcome this, we propose a pyramid-based hierarchical spatial-spectral transformer (PyFormer). This innovative approach organizes input data hierarchically into pyramid segments, each representing distinct abstraction levels, thereby enhancing processing efficiency. At each level, a dedicated transformer encoder is applied, effectively capturing both local and global context. Integration of outputs from different levels culminates in the final input representation. In short, the pyramid excels at capturing spatial features and local patterns, while the transformer effectively models spatial-spectral correlations and long-range dependencies. Experimental results underscore the superiority of the proposed method over state-of-the-art approaches, achieving overall accuracies of 96.28% for the Pavia University dataset and 97.36% for the University of Houston dataset. In addition, the incorporation of disjoint samples augments robustness and reliability, thereby highlighting the potential of PyFormer in advancing hyperspectral image classification (HSIC).
引用
收藏
页码:17681 / 17689
页数:9
相关论文
共 50 条
  • [1] HYPERSPECTRAL IMAGE CLASSIFICATION USING HIERARCHICAL SPATIAL-SPECTRAL TRANSFORMER
    Song, Chao
    Mei, Shaohui
    Ma, Mingyang
    Xu, Fulin
    Zhang, Yifan
    Du, Qian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3584 - 3587
  • [2] Spatial-Spectral Transformer for Hyperspectral Image Classification
    He, Xin
    Chen, Yushi
    Lin, Zhouhan
    REMOTE SENSING, 2021, 13 (03) : 1 - 22
  • [3] A Novel Spatial-Spectral Pyramid Network for Hyperspectral Image Classification
    Zhou, Junbo
    Zeng, Shan
    Gao, Guoqiang
    Chen, Yulong
    Tang, Yuanyan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [4] Hybrid Multiscale Spatial-Spectral Transformer for Hyperspectral Image Classification
    He, Yan
    Tu, Bing
    Liu, Bo
    Chen, Yunyun
    Li, Jun
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [5] Spatial-spectral hierarchical vision permutator for hyperspectral image classification
    Ji, Lifan
    Shao, Yihao
    Liu, Jianjun
    Xiao, Liang
    EUROPEAN JOURNAL OF REMOTE SENSING, 2023, 56 (01) : 1 - 16
  • [6] Spatial-Spectral Transformer for Hyperspectral Image Denoising
    Li, Miaoyu
    Fu, Ying
    Zhang, Yulun
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 1368 - 1376
  • [7] Spatial-Spectral Transformer With Conditional Position Encoding for Hyperspectral Image Classification
    Ahmad, Muhammad
    Usama, Muhammad
    Khan, Adil Mehmood
    Distefano, Salvatore
    Altuwaijri, Hamad Ahmed
    Mazzara, Manuel
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [8] Regularized spatial-spectral transformer for domain adaptation in hyperspectral image classification
    Fang, Zhuoqun
    Hu, Yi
    Tan, Zhenhua
    Li, Zhaokui
    Yan, Zhuo
    He, Yutong
    Luo, Shaoteng
    Cao, Ye
    JOURNAL OF APPLIED REMOTE SENSING, 2024, 18 (04)
  • [9] Spatial-Spectral Transformer With Cross-Attention for Hyperspectral Image Classification
    Peng, Yishu
    Zhang, Yuwen
    Tu, Bing
    Li, Qianming
    Li, Wujing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] Hyperspectral image classification based on hierarchical spatial-spectral fusion network
    Ouyang N.
    Li Z.-F.
    Lin L.-P.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (10): : 2438 - 2446