Pyramid Hierarchical Spatial-Spectral Transformer for Hyperspectral Image Classification

被引:4
|
作者
Ahmad, Muhammad [1 ]
Butt, Muhammad Hassaan Farooq [2 ]
Mazzara, Manuel [3 ]
Distefano, Salvatore [4 ]
Khan, Adil Mehmood [5 ]
Altuwaijri, Hamad Ahmed [6 ]
机构
[1] Natl Univ Comp & Emerging Sci, Dept Comp Sci, Chiniot Faisalabad Campus, Islamabad 35400, Pakistan
[2] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 611756, Peoples R China
[3] Innopolis Univ, Inst Software Dev & Engn, Innopolis 420500, Russia
[4] Univ Messina, Dipartimento Matemat & Informat, MIFT, I-98121 Messina, Italy
[5] Univ Hull, Sch Comp Sci, Kingston Upon Hull HU6 7RX, England
[6] King Saud Univ, Coll Humanities & Social Sci, Dept Geog, Riyadh 11451, Saudi Arabia
关键词
Transformers; Feature extraction; Convolution; Semantics; Computational modeling; Training; Data mining; Pyramid network; spatial-spectral transformer (SST); hyperspectral image classification (HSIC); VISION TRANSFORMER; NETWORK;
D O I
10.1109/JSTARS.2024.3461851
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The transformer model encounters challenges with variable-length input sequences, leading to efficiency and scalability concerns. To overcome this, we propose a pyramid-based hierarchical spatial-spectral transformer (PyFormer). This innovative approach organizes input data hierarchically into pyramid segments, each representing distinct abstraction levels, thereby enhancing processing efficiency. At each level, a dedicated transformer encoder is applied, effectively capturing both local and global context. Integration of outputs from different levels culminates in the final input representation. In short, the pyramid excels at capturing spatial features and local patterns, while the transformer effectively models spatial-spectral correlations and long-range dependencies. Experimental results underscore the superiority of the proposed method over state-of-the-art approaches, achieving overall accuracies of 96.28% for the Pavia University dataset and 97.36% for the University of Houston dataset. In addition, the incorporation of disjoint samples augments robustness and reliability, thereby highlighting the potential of PyFormer in advancing hyperspectral image classification (HSIC).
引用
收藏
页码:17681 / 17689
页数:9
相关论文
共 50 条
  • [41] Multiscale-Sparse Spatial-Spectral Transformer for Hyperspectral Image Denoising
    Xiao, Zilong
    Qin, Hanlin
    Yang, Shuowen
    Yan, Xiang
    Zhou, Huixin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [42] Semisupervised classification for hyperspectral image based on spatial-spectral clustering
    Wang, Liguo
    Yang, Yueshuang
    Liu, Danfeng
    JOURNAL OF APPLIED REMOTE SENSING, 2015, 9
  • [43] Spatial-spectral ant colony optimization for hyperspectral image classification
    Sharma, Shakti
    Buddhiraju, Krishna Mohan
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (09) : 2702 - 2717
  • [44] Adaptive Spatial-Spectral Feature Learning for Hyperspectral Image Classification
    Li, Simin
    Zhu, Xueyu
    Liu, Yang
    Bao, Jie
    IEEE ACCESS, 2019, 7 : 61534 - 61547
  • [45] Spatial-Spectral Kernel Sparse Representation for Hyperspectral Image Classification
    Liu, Jianjun
    Wu, Zebin
    Wei, Zhihui
    Xiao, Liang
    Sun, Le
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (06) : 2462 - 2471
  • [46] SPATIAL-SPECTRAL MULTIPLE KERNEL LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Gu, Yanfeng
    Feng, Kai
    Wang, Hong
    2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2013,
  • [47] Spatial-spectral operator theoretic methods for hyperspectral image classification
    Benedetto J.J.
    Czaja W.
    Dobrosotskaya J.
    Doster T.
    Duke K.
    GEM - International Journal on Geomathematics, 2016, 7 (2) : 275 - 297
  • [48] WaveMamba: Spatial-Spectral Wavelet Mamba for Hyperspectral Image Classification
    Ahmad, Muhammad
    Usama, Muhammad
    Mazzara, Manuel
    Distefano, Salvatore
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [49] DISCRIMINANT SPATIAL-SPECTRAL HYPERGRAPH LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Luo, Fulin
    Zhang, Liangpei
    Du, Bo
    Zhang, Lefei
    Dong, Yanni
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8480 - 8483
  • [50] Discriminative spatial-spectral manifold embedding for hyperspectral image classification
    Zhou, Langming
    Zhang, Xiaohu
    REMOTE SENSING LETTERS, 2015, 6 (09) : 715 - 724