Spatial-spectral operator theoretic methods for hyperspectral image classification

被引:7
|
作者
Benedetto J.J. [1 ]
Czaja W. [1 ]
Dobrosotskaya J. [2 ]
Doster T. [1 ]
Duke K. [3 ]
机构
[1] Department of Mathematics, University of Maryland, College Park, MD
[2] Department of Mathematics, Case Western Reserve University, Clevland, OH
[3] Department of Mathematics and Statistics, American University, Washington, DC
基金
美国国家科学基金会;
关键词
Hyperspectral; Manifold learning; Spatial-spectral fusion;
D O I
10.1007/s13137-016-0085-0
中图分类号
学科分类号
摘要
With the emergence of new remote sensing modalities, it becomes increasingly important to find novel algorithms for fusion and integration of different types of data for the purpose of improving performance of applications, such as target/anomaly detection or classification. Many popular techniques that deal with this problem are based on performing multiple classifications and fusing these individual results into one product. In this paper we provide a new approach, focused on creating joint representations of the multi-modal data, which then can be subject to analysis by state of the art classifiers. In the work presented in this paper we consider the problem of spatial-spectral fusion for hyperspectral imagery. Our approach involves machine learning techniques based on analysis of joint data-dependent graphs and the resulting data-dependent fusion operators and their representations. © 2016, Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:275 / 297
页数:22
相关论文
共 50 条
  • [1] Spatial-Spectral ConvNeXt for Hyperspectral Image Classification
    Zhu, Yimin
    Yuan, Kexin
    Zhong, Wenlong
    Xu, Linlin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 (5453-5463) : 5453 - 5463
  • [2] Spatial-Spectral Transformer for Hyperspectral Image Classification
    He, Xin
    Chen, Yushi
    Lin, Zhouhan
    REMOTE SENSING, 2021, 13 (03) : 1 - 22
  • [3] Spatial-Spectral BERT for Hyperspectral Image Classification
    Ashraf, Mahmood
    Zhou, Xichuan
    Vivone, Gemine
    Chen, Lihui
    Chen, Rong
    Majdard, Reza Seifi
    REMOTE SENSING, 2024, 16 (03)
  • [4] A spatial-spectral SIFT for hyperspectral image matching and classification
    Li, Yanshan
    Li, Qingteng
    Liu, Yan
    Xie, Weixin
    PATTERN RECOGNITION LETTERS, 2019, 127 : 18 - 26
  • [5] Learning Spatial-Spectral Features for Hyperspectral Image Classification
    Shu, Lei
    McIsaac, Kenneth
    Osinski, Gordon R.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09): : 5138 - 5147
  • [6] Spatial-spectral morphological mamba for hyperspectral image classification
    Ahmad, Muhammad
    Butt, Muhammad Hassaan Farooq
    Khan, Adil Mehmood
    Mazzara, Manuel
    Distefano, Salvatore
    Usama, Muhammad
    Roy, Swalpa Kumar
    Chanussot, Jocelyn
    Hong, Danfeng
    NEUROCOMPUTING, 2025, 636
  • [7] Spatial-Spectral Decoupling Framework for Hyperspectral Image Classification
    Fang, Jie
    Zhu, Zhijie
    He, Guanghua
    Wang, Nan
    Cao, Xiaoqian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [8] SPATIAL-SPECTRAL CONTRASTIVE LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Guan, Peiyan
    Lam, Edmund Y.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1372 - 1375
  • [9] MambaHSI: Spatial-Spectral Mamba for Hyperspectral Image Classification
    Li, Yapeng
    Luo, Yong
    Zhang, Lefei
    Wang, Zengmao
    Du, Bo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 1
  • [10] Joint Spatial-Spectral Attention Network for Hyperspectral Image Classification
    Li, Lei
    Yin, Jihao
    Jia, Xiuping
    Li, Sen
    Han, Bingnan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (10) : 1816 - 1820