Hybrid Multiscale Spatial-Spectral Transformer for Hyperspectral Image Classification

被引:6
|
作者
He, Yan [1 ,2 ]
Tu, Bing [1 ,2 ]
Liu, Bo [1 ,2 ]
Chen, Yunyun [1 ,2 ]
Li, Jun [3 ]
Plaza, Antonio [4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Inst Opt & Elect, Jiangsu Key Lab Optoelect Detect Atmosphere & Ocea, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Jiangsu Int Joint Lab Meteorol Photon & Optoelect, Nanjing 210044, Jiangsu, Peoples R China
[3] China Univ Geosci, Fac Comp Sci, Wuhan 430074, Peoples R China
[4] Univ Extremadura, Escuela Politecn, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10003, Spain
基金
中国国家自然科学基金;
关键词
Hyperspectral image (HSI) classification; multiscale self-attention; transformer network; FEATURE-EXTRACTION;
D O I
10.1109/TGRS.2024.3443662
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral image (HSI) classification constitutes a significant foundation for remote sensing analysis. Transformer architecture establishes long-range dependencies with a self-attention mechanism (SA), which exhibits advantages in HSI classification. However, most existing transformer-based methods are inadequate in exploring the multiscale properties of hybrid spatial and spectral information inherent in HSI data. To countermeasure this problem, this work investigates a hybrid multiscale spatial-spectral framework (HMSSF). It innovatively models global dependencies across multiple scales from both spatial and spectral domains, which allows for cooperatively capturing hybrid multiscale spatial and spectral characteristics for HSI classification. Technically, a spatial-spectral token generation (SSTG) module is first designed to generate the spatial tokens and spectral tokens. Then, a multiscale SA (MSSA) is developed to achieve multiscale attention modeling by constructing different dimensional attention heads per attention layer. This mechanism is adaptively integrated into both spatial and spectral branches for hybrid multiscale feature extraction. Furthermore, a spatial-spectral attention aggregation (SSAA) module is introduced to dynamically fuse the multiscale spatial and spectral features to enhance the classification robustness. Experimental results and analysis demonstrate that the proposed method outperforms the state-of-the-art methods on several public HSI datasets.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Spatial-Spectral Transformer for Hyperspectral Image Classification
    He, Xin
    Chen, Yushi
    Lin, Zhouhan
    REMOTE SENSING, 2021, 13 (03) : 1 - 22
  • [2] Multiscale-Sparse Spatial-Spectral Transformer for Hyperspectral Image Denoising
    Xiao, Zilong
    Qin, Hanlin
    Yang, Shuowen
    Yan, Xiang
    Zhou, Huixin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [3] Pyramid Hierarchical Spatial-Spectral Transformer for Hyperspectral Image Classification
    Ahmad, Muhammad
    Butt, Muhammad Hassaan Farooq
    Mazzara, Manuel
    Distefano, Salvatore
    Khan, Adil Mehmood
    Altuwaijri, Hamad Ahmed
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 17681 - 17689
  • [4] Multiscale spatial-spectral transformer network for hyperspectral and multispectral image fusion
    Jia, Sen
    Min, Zhichao
    Fu, Xiyou
    INFORMATION FUSION, 2023, 96 : 117 - 129
  • [5] HYPERSPECTRAL IMAGE CLASSIFICATION USING HIERARCHICAL SPATIAL-SPECTRAL TRANSFORMER
    Song, Chao
    Mei, Shaohui
    Ma, Mingyang
    Xu, Fulin
    Zhang, Yifan
    Du, Qian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3584 - 3587
  • [6] When Multigranularity Meets Spatial-Spectral Attention: A Hybrid Transformer for Hyperspectral Image Classification
    Ouyang, Er
    Li, Bin
    Hu, Wenjing
    Zhang, Guoyun
    Zhao, Lin
    Wu, Jianhui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [7] Spatial-Spectral Hyperspectral Image Classification Using Random Multiscale Representation
    Liu, Jianjun
    Wu, Zebin
    Li, Jun
    Xiao, Liang
    Plaza, Antonio
    Benediktsson, Jon Atli
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (09) : 4129 - 4141
  • [8] Multiscale Spatial-Spectral Feature Extraction Network for Hyperspectral Image Classification
    Ye, Zhen
    Li, Cuiling
    Liu, Qingxin
    Bai, Lin
    Fowler, James E.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 4640 - 4652
  • [9] Spatial-Spectral Transformer for Hyperspectral Image Denoising
    Li, Miaoyu
    Fu, Ying
    Zhang, Yulun
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 1368 - 1376
  • [10] Spatial-Spectral Transformer With Conditional Position Encoding for Hyperspectral Image Classification
    Ahmad, Muhammad
    Usama, Muhammad
    Khan, Adil Mehmood
    Distefano, Salvatore
    Altuwaijri, Hamad Ahmed
    Mazzara, Manuel
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21