Hybrid Multiscale Spatial-Spectral Transformer for Hyperspectral Image Classification

被引:6
|
作者
He, Yan [1 ,2 ]
Tu, Bing [1 ,2 ]
Liu, Bo [1 ,2 ]
Chen, Yunyun [1 ,2 ]
Li, Jun [3 ]
Plaza, Antonio [4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Inst Opt & Elect, Jiangsu Key Lab Optoelect Detect Atmosphere & Ocea, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Jiangsu Int Joint Lab Meteorol Photon & Optoelect, Nanjing 210044, Jiangsu, Peoples R China
[3] China Univ Geosci, Fac Comp Sci, Wuhan 430074, Peoples R China
[4] Univ Extremadura, Escuela Politecn, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10003, Spain
基金
中国国家自然科学基金;
关键词
Hyperspectral image (HSI) classification; multiscale self-attention; transformer network; FEATURE-EXTRACTION;
D O I
10.1109/TGRS.2024.3443662
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral image (HSI) classification constitutes a significant foundation for remote sensing analysis. Transformer architecture establishes long-range dependencies with a self-attention mechanism (SA), which exhibits advantages in HSI classification. However, most existing transformer-based methods are inadequate in exploring the multiscale properties of hybrid spatial and spectral information inherent in HSI data. To countermeasure this problem, this work investigates a hybrid multiscale spatial-spectral framework (HMSSF). It innovatively models global dependencies across multiple scales from both spatial and spectral domains, which allows for cooperatively capturing hybrid multiscale spatial and spectral characteristics for HSI classification. Technically, a spatial-spectral token generation (SSTG) module is first designed to generate the spatial tokens and spectral tokens. Then, a multiscale SA (MSSA) is developed to achieve multiscale attention modeling by constructing different dimensional attention heads per attention layer. This mechanism is adaptively integrated into both spatial and spectral branches for hybrid multiscale feature extraction. Furthermore, a spatial-spectral attention aggregation (SSAA) module is introduced to dynamically fuse the multiscale spatial and spectral features to enhance the classification robustness. Experimental results and analysis demonstrate that the proposed method outperforms the state-of-the-art methods on several public HSI datasets.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] A Hybrid Spectral Attention-Enabled Multiscale Spatial-Spectral Learning Network for Hyperspectral Image Superresolution
    Wang, Wenjing
    Mu, Tingkui
    Li, Qiuxia
    Li, Haoyang
    Yang, Qiujie
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 11016 - 11033
  • [42] Multiscale Spatial-Spectral Convolutional Network with Image-Based Framework for Hyperspectral Imagery Classification
    Cui, Ximin
    Zheng, Ke
    Gao, Lianru
    Zhang, Bing
    Yang, Dong
    Ren, Jinchang
    REMOTE SENSING, 2019, 11 (19)
  • [43] CS2DT: Cross Spatial-Spectral Dense Transformer for Hyperspectral Image Classification
    Xu, Hao
    Zeng, Zhigang
    Yao, Wei
    Lu, Jiayue
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [44] MHIAIFormer: Multihead Interacted and Adaptive Integrated Transformer With Spatial-Spectral Attention for Hyperspectral Image Classification
    Kong, Delong
    Zhang, Jiahua
    Zhang, Shichao
    Yu, Xiang
    Prodhan, Foyez Ahmed
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 14486 - 14501
  • [45] Hyperspectral Image Classification Using Attention-Only Spatial-Spectral Network Based on Transformer
    Liao, Weiyi
    Wang, Fengshan
    Zhao, Huachen
    IEEE ACCESS, 2024, 12 : 93677 - 93688
  • [46] Spatial-Spectral 1DSwin Transformer With Groupwise Feature Tokenization for Hyperspectral Image Classification
    Xu, Yifei
    Xie, Yixuan
    Li, Bicheng
    Xie, Chuanqi
    Zhang, Yongchuan
    Wang, Aichen
    Zhu, Li
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [47] Two-branch global spatial-spectral fusion transformer network for hyperspectral image classification
    Xie, Erxin
    Chen, Na
    Zhang, Genwei
    Peng, Jiangtao
    Sun, Weiwei
    PHOTOGRAMMETRIC RECORD, 2024, 39 (186): : 392 - 411
  • [48] Joint Spatial-Spectral Attention Network for Hyperspectral Image Classification
    Li, Lei
    Yin, Jihao
    Jia, Xiuping
    Li, Sen
    Han, Bingnan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (10) : 1816 - 1820
  • [49] SSUM: Spatial-Spectral Unified Mamba for Hyperspectral Image Classification
    Lu, Song
    Zhang, Min
    Huo, Yu
    Wang, Chenhao
    Wang, Jingwen
    Gao, Chenyu
    REMOTE SENSING, 2024, 16 (24)
  • [50] CLASSIFICATION OF HYPERSPECTRAL IMAGE VIA SPATIAL-SPECTRAL MANIFOLD RECONSTRUCTION
    Yang, Yaqiong
    Huang, Hong
    Luo, Fulin
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2442 - 2445