Client Selection in Federated Learning: A Dynamic Matching-Based Incentive Mechanism

被引:0
|
作者
Yellampalli, Sai Sharanya [1 ]
Chalupa, Mikulas [2 ]
Wang, Jingyi [1 ]
Song, Hyo Jung [1 ]
Zhang, Xinyue [2 ]
Yue, Hao [1 ]
Pan, Miao [3 ]
机构
[1] San Francisco State Univ, Dept Comp Sci, San Francisco, CA 94132 USA
[2] Kennesaw State Univ, Dept Comp Sci, Marietta, GA 30060 USA
[3] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA
基金
美国国家科学基金会;
关键词
Federated Learning; Learning Quality; Matching; Optimization;
D O I
10.1109/CNC59896.2024.10556019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) has rapidly evolved as a distributed learning paradigm, enabling clients to collaboratively train models while retaining data privacy on their devices, which can guarantee the privacy of the training data. However, it faces distinct challenges on both server and client fronts. On the server side, there is a lack of efficient strategies for selecting high-performing clients, leading to potential degradation in training accuracy due to subpar model updates. On the client's side, they are often deterred from participation due to significant energy consumption during both computation and data transmission processes. Existing incentive mechanisms in FL seldom consider both the energy consumption of the clients and the learning quality of the server. To bridge this gap, this paper introduces an adaptive incentive mechanism, which considers both the anticipated learning quality of clients and the associated energy costs during training. We propose a novel distributed Matching-based Incentive Mechanism (MAAIM) for client selection in FL. Leveraging a deferred acceptance algorithm, MAAIM facilitates stable client-server pairings, ensuring that both parties' primary concerns are addressed. Experimental results demonstrate the effectiveness of the proposed MAAIM.
引用
收藏
页码:989 / 993
页数:5
相关论文
共 50 条
  • [31] Incentive-Aware Autonomous Client Participation in Federated Learning
    Hu, Miao
    Wu, Di
    Zhou, Yipeng
    Chen, Xu
    Chen, Min
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (10) : 2612 - 2627
  • [32] Flexible Global Aggregation and Dynamic Client Selection for Federated Learning in Internet of Vehicles
    Qayyum, Tariq
    Trabelsi, Zouheir
    Tariq, Asadullah
    Ali, Muhammad
    Hayawi, Kadhim
    Din, Irfan Ud
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (02): : 1739 - 1757
  • [33] ADAFL: ADAPTIVE CLIENT SELECTION AND DYNAMIC CONTRIBUTION EVALUATION FOR EFFICIENT FEDERATED LEARNING
    Li, Qingming
    Li, Xiaohang
    Zhou, Li
    Yan, Xiaoran
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6645 - 6649
  • [34] Client Selection with Bandwidth Allocation in Federated Learning
    Kuang, Junqian
    Yang, Miao
    Zhu, Hongbin
    Qian, Hua
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [35] Towards Client Selection in Satellite Federated Learning
    Wu, Changhao
    He, Siyang
    Yin, Zengshan
    Guo, Chongbin
    APPLIED SCIENCES-BASEL, 2024, 14 (03):
  • [36] A review on client selection models in federated learning
    Panigrahi, Monalisa
    Bharti, Sourabh
    Sharma, Arun
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 13 (06)
  • [37] Active Client Selection for Clustered Federated Learning
    Huang, Honglan
    Shi, Wei
    Feng, Yanghe
    Niu, Chaoyue
    Cheng, Guangquan
    Huang, Jincai
    Liu, Zhong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16424 - 16438
  • [38] Active Client Selection for Clustered Federated Learning
    Huang, Honglan
    Shi, Wei
    Feng, Yanghe
    Niu, Chaoyue
    Cheng, Guangquan
    Huang, Jincai
    Liu, Zhong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16424 - 16438
  • [39] An Efficient Client Selection for Wireless Federated Learning
    Chen, Jingyi
    Wang, Qiang
    Zhang, Wenqi
    2023 28TH ASIA PACIFIC CONFERENCE ON COMMUNICATIONS, APCC 2023, 2023, : 291 - 296
  • [40] A Review of Client Selection Methods in Federated Learning
    Mayhoub S.
    M. Shami T.
    Archives of Computational Methods in Engineering, 2024, 31 (02) : 1129 - 1152