Client Selection in Federated Learning: A Dynamic Matching-Based Incentive Mechanism

被引:0
|
作者
Yellampalli, Sai Sharanya [1 ]
Chalupa, Mikulas [2 ]
Wang, Jingyi [1 ]
Song, Hyo Jung [1 ]
Zhang, Xinyue [2 ]
Yue, Hao [1 ]
Pan, Miao [3 ]
机构
[1] San Francisco State Univ, Dept Comp Sci, San Francisco, CA 94132 USA
[2] Kennesaw State Univ, Dept Comp Sci, Marietta, GA 30060 USA
[3] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA
基金
美国国家科学基金会;
关键词
Federated Learning; Learning Quality; Matching; Optimization;
D O I
10.1109/CNC59896.2024.10556019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) has rapidly evolved as a distributed learning paradigm, enabling clients to collaboratively train models while retaining data privacy on their devices, which can guarantee the privacy of the training data. However, it faces distinct challenges on both server and client fronts. On the server side, there is a lack of efficient strategies for selecting high-performing clients, leading to potential degradation in training accuracy due to subpar model updates. On the client's side, they are often deterred from participation due to significant energy consumption during both computation and data transmission processes. Existing incentive mechanisms in FL seldom consider both the energy consumption of the clients and the learning quality of the server. To bridge this gap, this paper introduces an adaptive incentive mechanism, which considers both the anticipated learning quality of clients and the associated energy costs during training. We propose a novel distributed Matching-based Incentive Mechanism (MAAIM) for client selection in FL. Leveraging a deferred acceptance algorithm, MAAIM facilitates stable client-server pairings, ensuring that both parties' primary concerns are addressed. Experimental results demonstrate the effectiveness of the proposed MAAIM.
引用
收藏
页码:989 / 993
页数:5
相关论文
共 50 条
  • [21] Optimal Client Selection of Federated Learning Based on Compressed Sensing
    Li, Qing
    Lyu, Shanxiang
    Wen, Jinming
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 1679 - 1694
  • [22] Client Selection Based on Label Quantity Information for Federated Learning
    Ma, Jiahua
    Sun, Xinghua
    Xia, Wenchao
    Wang, Xijun
    Chen, Xiang
    Zhu, Hongbo
    2021 IEEE 32ND ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2021,
  • [23] Federated learning client selection algorithm based on gradient similarity
    Hu, Lingxi
    Hu, Yuanyuan
    Jiang, Linhua
    Long, Wei
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (02):
  • [24] Auction-based client selection for online Federated Learning
    Guo, Juncai
    Su, Lina
    Liu, Jin
    Ding, Jianli
    Liu, Xiao
    Huang, Bo
    Li, Li
    INFORMATION FUSION, 2024, 112
  • [25] Blockchain-based Secure Client Selection in Federated Learning
    Nguyen, Truc
    Thai, Phuc
    Jeter, Tre R.
    Dinht, Thang N.
    Thai, My T.
    2022 IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN AND CRYPTOCURRENCY (IEEE ICBC 2022), 2022,
  • [26] FedBoost: Bayesian Estimation Based Client Selection for Federated Learning
    Sheng, Yuhang
    Zeng, Lingguo
    Cao, Shuqin
    Dai, Qing
    Yang, Shasha
    Lu, Jianfeng
    IEEE ACCESS, 2024, 12 : 52255 - 52266
  • [27] Asynchronous Federated Learning with Incentive Mechanism Based on Contract Theory
    Yang, Danni
    Ji, Yun
    Kou, Zhoubin
    Zhong, Xiaoxiong
    Zhang, Sheng
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [28] A bipartite matching-based feature selection for multi-label learning
    Amin Hashemi
    Mohammad Bagher Dowlatshahi
    Hossein Nezamabadi-Pour
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 459 - 475
  • [29] A bipartite matching-based feature selection for multi-label learning
    Hashemi, Amin
    Dowlatshahi, Mohammad Bagher
    Nezamabadi-Pour, Hossein
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (02) : 459 - 475
  • [30] Improving Federated Learning through Abnormal Client Detection and Incentive
    Guo, Hongle
    Mao, Yingchi
    He, Xiaoming
    Zhang, Benteng
    Pang, Tianfu
    Ping, Ping
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 139 (01): : 383 - 403