On approximation of Bernstein-Stancu operators in movable interval

被引:0
|
作者
WAGN Feng-feng
YU Dan-sheng
机构
[1] DepartmentofMathematics,HangzhouNormalUniversity
关键词
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
In the present paper, we obtain the converse results of approximation of a newly introduced genuine Bernstein-Durrmeyer operators in movable interval. We also get the moments properties of an auxiliary operator which has its own independent values. The moments of the auxiliary operators play important roles in establishing the main result(Theorem 4).
引用
收藏
页码:85 / 101
页数:17
相关论文
共 50 条
  • [41] Approximation by Stancu-Chlodowsky type λ-Bernstein operators
    Mursaleen, M.
    Al-Abied, A. A. H.
    Salman, M. A.
    JOURNAL OF APPLIED ANALYSIS, 2020, 26 (01) : 97 - 110
  • [42] Approximation by Durrmeyer Type Bernstein–Stancu Polynomials in Movable Compact Disks
    Bing Jiang
    Dansheng Yu
    Results in Mathematics, 2019, 74
  • [43] Bernstein-Stancu算子的加权逼近
    钱程
    滕旦霞
    虞旦盛
    杭州师范大学学报(自然科学版), 2016, 15 (06) : 636 - 642
  • [44] On the Borel summability method for convergence of triple sequences of Bernstein-Stancu operators of fuzzy numbers
    Indumathi, A.
    Subramanian, N.
    Hazarika, Bipan
    SOFT COMPUTING, 2021, 25 (01) : 683 - 697
  • [45] A Kantorovich variant of a new type Bernstein-Stancu polynomials
    Icoz, Gurhan
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (17) : 8552 - 8560
  • [46] On Approximation Properties of a Stancu Generalization of Szasz–Mirakyan–Bernstein Operators
    Tunç T.
    Fedakar B.
    Journal of Mathematical Sciences, 2022, 260 (5) : 700 - 710
  • [47] Approximation Properties of Generalized λ-Bernstein-Stancu-Type Operators
    Cai, Qing-Bo
    Torun, Gulten
    Dinlemez Kantar, Ulku
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [48] Approximation by Kantorovich Type q-Bernstein-Stancu Operators
    M. Mursaleen
    Khursheed J. Ansari
    Asif Khan
    Complex Analysis and Operator Theory, 2017, 11 : 85 - 107
  • [49] Approximation by Kantorovich Type q-Bernstein-Stancu Operators
    Mursaleen, M.
    Ansari, Khursheed J.
    Khan, Asif
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (01) : 85 - 107
  • [50] An Error Estimate for a Bernstein-Stancu Operator with Negative Parameter
    Pascu, Mihai Nicolae
    Pascu, Nicolae Radu
    Tripsa, Florenta
    RESULTS IN MATHEMATICS, 2019, 74 (01)