A Kantorovich variant of a new type Bernstein-Stancu polynomials

被引:23
|
作者
Icoz, Gurhan [1 ]
机构
[1] Gazi Univ, Dept Math, Ankara, Turkey
关键词
Bernstein polynomials; Bernstein-Stancu type polynomials; Kantorovich-type generalization; Rate of convergence; POSITIVE OPERATORS;
D O I
10.1016/j.amc.2012.02.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new generalization of Bernstein-Stancu Kantorovich type polynomials are constructed and the theorems on convergence and the degree of convergence are established. In addition r-th generalization is given. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:8552 / 8560
页数:9
相关论文
共 50 条
  • [1] Bernstein-Stancu type operators which preserve polynomials
    Kwun, Young Chel
    Acu, Ana-Maria
    Rafiq, Arif
    Radu, Voichita Adriana
    Ali, Faisal
    Kang, Shin Min
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (04) : 758 - 770
  • [2] ON BERNSTEIN-STANCU TYPE OPERATORS
    Gavrea, I.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (04): : 81 - 88
  • [3] Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables
    Gadjiev, A. D.
    Ghorbanalizadeh, A. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (03) : 890 - 901
  • [4] On the Convergence of Bernstein-Stancu Polynomials in the Variation Seminorm
    Oksuzer, Ozlem
    Karsli, Harun
    Yesildal, Fatma Tasdelen
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (05) : 583 - 602
  • [5] Approximation by Durrmeyer Type Bernstein-Stancu Polynomials in Movable Compact Disks
    Jiang, Bing
    Yu, Dansheng
    RESULTS IN MATHEMATICS, 2019, 74 (01)
  • [6] A NEW BERNSTEIN-STANCU TYPE OPERATOR WITH NEGATIVE PARAMETER
    Pascu, Mihai N.
    Pascu, Nicolae R.
    Tripsa, Florenta
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2019, 20 (01): : 19 - 28
  • [7] Approximation by Complex Bernstein-Stancu Polynomials in Compact Disks
    Gal, Sorin G.
    RESULTS IN MATHEMATICS, 2009, 53 (3-4) : 245 - 256
  • [8] On Approximation by Bernstein-Stancu Polynomials in Movable Compact Disks
    Jiang, Bing
    Yu, Dansheng
    RESULTS IN MATHEMATICS, 2017, 72 (03) : 1535 - 1543
  • [9] Kantorovich型Bernstein-Stancu算子的点态逼近
    董吕修
    虞旦盛
    杭州师范大学学报(自然科学版), 2015, 14 (06) : 632 - 640
  • [10] Kantorovich 型Bernstein-Stancu算子的Voronovskaja型估计
    夏荣荣
    虞旦盛
    杭州师范大学学报(自然科学版), 2019, 18 (05) : 535 - 540