On finite pseudorandom binary sequences: functions from a Hardy field

被引:0
|
作者
Madritsch, M. G. [1 ]
Rivat, J. [2 ]
Tichy, R. F. [3 ]
机构
[1] Univ Lorraine, CNRS, IECL, F-54000 Nancy, France
[2] Univ Aix Marseille, Inst Univ France, Inst Math Marseille, CNRS UMR 7373, 163, Ave Luminy, Case 907, F-13288 Marseille 9, France
[3] Graz Univ Technol, Inst Anal & Number Theory, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
pseudorandom; binary sequence; Hardy field; well-distribution; correlation; UNIFORM-DISTRIBUTION;
D O I
10.1007/s10474-024-01469-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a construction of binary pseudorandom sequences based on Hardy fields H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} as considered by Boshernitzan. In particular we give upper bounds for the well distribution measure and the correlation measure defined by Mauduit and S & aacute;rk & ouml;zy. Finally we show that the correlation measure of order s is small only if s is small compared to the "growth exponent" of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document}.
引用
收藏
页码:121 / 137
页数:17
相关论文
共 50 条
  • [41] Construction of large families of pseudorandom binary sequences
    Merai, Laszlo
    RAMANUJAN JOURNAL, 2009, 18 (03): : 341 - 349
  • [42] A family of elliptic curve pseudorandom binary sequences
    Huaning Liu
    Designs, Codes and Cryptography, 2014, 73 : 251 - 265
  • [43] Trace representation of pseudorandom binary sequences derived from Euler quotients
    Zhixiong Chen
    Xiaoni Du
    Radwa Marzouk
    Applicable Algebra in Engineering, Communication and Computing, 2015, 26 : 555 - 570
  • [44] On a class of pseudorandom sequences from elliptic curves over finite fields
    Hu, Honggang
    Hu, Lei
    Feng, Dengguo
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (07) : 2598 - 2605
  • [45] On the correlation of pseudorandom binary sequences using additive characters
    Liu, Huaning
    Wang, Xiaoyun
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 79 (1-2): : 145 - 170
  • [46] Construction of Pseudorandom Binary Sequences Using Additive Characters
    Christian Mauduit
    Joël Rivat
    András Sárközy
    Monatshefte für Mathematik, 2004, 141 : 197 - 208
  • [47] Modular constructions of pseudorandom binary sequences with composite moduli
    Rivat J.
    Sárközy A.
    Periodica Mathematica Hungarica, 2005, 51 (2) : 75 - 107
  • [48] Remarks on Pseudorandom Binary Sequences Over Elliptic Curves
    Merai, Laszlo
    FUNDAMENTA INFORMATICAE, 2012, 114 (3-4) : 301 - 308
  • [49] A Note on Large Families of Pseudorandom Binary Sequences and Lattices
    Liu, Huaning
    Gao, Jing
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2014, 30 (05) : 1635 - 1654
  • [50] Construction of pseudorandom binary sequences using additive characters
    Mauduit, C
    Rivat, J
    Sárközy, A
    MONATSHEFTE FUR MATHEMATIK, 2004, 141 (03): : 197 - 208