On finite pseudorandom binary sequences: functions from a Hardy field

被引:0
|
作者
Madritsch, M. G. [1 ]
Rivat, J. [2 ]
Tichy, R. F. [3 ]
机构
[1] Univ Lorraine, CNRS, IECL, F-54000 Nancy, France
[2] Univ Aix Marseille, Inst Univ France, Inst Math Marseille, CNRS UMR 7373, 163, Ave Luminy, Case 907, F-13288 Marseille 9, France
[3] Graz Univ Technol, Inst Anal & Number Theory, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
pseudorandom; binary sequence; Hardy field; well-distribution; correlation; UNIFORM-DISTRIBUTION;
D O I
10.1007/s10474-024-01469-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a construction of binary pseudorandom sequences based on Hardy fields H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} as considered by Boshernitzan. In particular we give upper bounds for the well distribution measure and the correlation measure defined by Mauduit and S & aacute;rk & ouml;zy. Finally we show that the correlation measure of order s is small only if s is small compared to the "growth exponent" of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document}.
引用
收藏
页码:121 / 137
页数:17
相关论文
共 50 条
  • [31] On finite pseudorandom sequences of k symbols
    Bérczi Gergely
    Periodica Mathematica Hungarica, 2003, 47 (1-2) : 29 - 44
  • [32] Finite and infinite pseudorandom binary words
    Mauduit, C
    THEORETICAL COMPUTER SCIENCE, 2002, 273 (1-2) : 249 - 261
  • [33] Construction of large families of pseudorandom binary sequences
    Goubin, L
    Mauduit, C
    Sárközy, A
    JOURNAL OF NUMBER THEORY, 2004, 106 (01) : 56 - 69
  • [34] Randomness quality of permuted pseudorandom binary sequences
    Tan, Syn Kiat
    Guan, Sheng-Uei
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (05) : 1618 - 1626
  • [35] A family of elliptic curve pseudorandom binary sequences
    Liu, Huaning
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 73 (01) : 251 - 265
  • [36] PARAMETER ESTIMATION USING PSEUDORANDOM BINARY SEQUENCES
    MACLEOD, CJ
    ELECTRONICS LETTERS, 1969, 5 (02) : 35 - &
  • [37] On pseudorandom [0,1) and binary sequences
    Mauduit, Christian
    Niederreiter, Harald
    Sarkozy, Andras
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2007, 71 (3-4): : 305 - 324
  • [38] On the correlation of pseudorandom binary sequences with composite moduli
    Liu, Huaning
    Zhan, Tao
    Wang, Xiaoyun
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2009, 74 (1-2): : 195 - 214
  • [39] Construction of large families of pseudorandom binary sequences
    László Mérai
    The Ramanujan Journal, 2009, 18 : 341 - 349
  • [40] Trace representation of pseudorandom binary sequences derived from Euler quotients
    Chen, Zhixiong
    Du, Xiaoni
    Marzouk, Radwa
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2015, 26 (06) : 555 - 570